Weifeng Gu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2727177/publications.pdf

Version: 2024-02-01

279798 377865 4,923 33 23 34 citations h-index g-index papers 34 34 34 4079 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The RNA phosphatase PIR-1 regulates endogenous small RNA pathways in C.Âelegans. Molecular Cell, 2021, 81, 546-557.e5.	9.7	15
2	The RabGAP TBC-11 controls Argonaute localization for proper microRNA function in C. elegans. PLoS Genetics, 2021, 17, e1009511.	3.5	7
3	PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nature Cell Biology, 2021, 23, 424-436.	10.3	115
4	Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism. Nature Communications, 2021, 12, 5948.	12.8	20
5	YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Analytical Chemistry, 2020, 92, 1346-1354.	6.5	50
6	A convenient strategy to clone small RNA and mRNA for high-throughput sequencing. Rna, 2020, 26, 218-227.	3.5	18
7	Small RNA Plays Important Roles in Virus–Host Interactions. Viruses, 2020, 12, 1271.	3.3	6
8	Influenza A virus utilizes noncanonical cap-snatching to diversify its mRNA/ncRNA. Rna, 2020, 26, 1170-1183.	3.5	8
9	Strategies and Best Practice in Cloning Small RNAs. Gene Technology, 2020, 9, .	0.5	3
10	A Phytophthora Effector Suppresses Trans-Kingdom RNAi to Promote Disease Susceptibility. Cell Host and Microbe, 2019, 25, 153-165.e5.	11.0	173
11	House dust mites use a plant-like siRNA pathway to silence transposable elements. PLoS Genetics, 2018, 14, e1007255.	3.5	1
12	The Antiviral RNA Interference Response Provides Resistance to Lethal Arbovirus Infection and Vertical Transmission in Caenorhabditis elegans. Current Biology, 2017, 27, 795-806.	3.9	64
13	Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. Rna, 2016, 22, 1492-1499.	3.5	29
14	Suppression of pervasive noncoding transcription in embryonic stem cells by esBAF. Genes and Development, 2015, 29, 362-378.	5.9	67
15	Influenza A virus preferentially snatches noncoding RNA caps. Rna, 2015, 21, 2067-2075.	3.5	60
16	Diversity and Expression of MicroRNAs in the Filarial Parasite, Brugia malayi. PLoS ONE, 2014, 9, e96498.	2.5	29
17	The Vasa Homolog RDE-12 Engages Target mRNA and Multiple Argonaute Proteins to Promote RNAi in C.Âelegans. Current Biology, 2014, 24, 845-851.	3.9	32
18	The C.Âelegans CSR-1 Argonaute Pathway Counteracts Epigenetic Silencing to Promote Germline Gene Expression. Developmental Cell, 2013, 27, 656-663.	7.0	206

#	Article	IF	CITATIONS
19	Argonautes Promote Male Fertility and Provide a Paternal Memory of Germline Gene Expression in C.Aelegans. Cell, 2013, 155, 1532-1544.	28.9	158
20	The translin–TRAX complex (C3PO) is a ribonuclease in tRNA processing. Nature Structural and Molecular Biology, 2012, 19, 824-830.	8.2	30
21	CapSeq and CIP-TAP Identify Pol II Start Sites and Reveal Capped Small RNAs as C.Âelegans piRNA Precursors. Cell, 2012, 151, 1488-1500.	28.9	192
22	piRNAs Initiate an Epigenetic Memory of Nonself RNA in the C.Âelegans Germline. Cell, 2012, 150, 65-77.	28.9	539
23	C.Âelegans piRNAs Mediate the Genome-wide Surveillance of Germline Transcripts. Cell, 2012, 150, 78-87.	28.9	345
24	Cloning Argonaute-Associated Small RNAs from Caenorhabditis elegans. Methods in Molecular Biology, 2011, 725, 251-280.	0.9	22
25	Diverse Pathways Generate MicroRNA-like RNAs and Dicer-Independent Small Interfering RNAs in Fungi. Molecular Cell, 2010, 38, 803-814.	9.7	361
26	Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26G-RNAs and thermotolerant sperm in <i>Caenorhabditis elegans</i> Liv. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3588-3593.	7.1	204
27	Sequential rounds of RNA-dependent RNA transcription drive endogenous small-RNA biogenesis in the ERGO-1/Argonaute pathway. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3582-3587.	7.1	174
28	The Argonaute CSR-1 and Its 22G-RNA Cofactors Are Required for Holocentric Chromosome Segregation. Cell, 2009, 139, 123-134.	28.9	416
29	Distinct Argonaute-Mediated 22G-RNA Pathways Direct Genome Surveillance in the C. elegans Germline. Molecular Cell, 2009, 36, 231-244.	9.7	449
30	PRG-1 and 21U-RNAs Interact to Form the piRNA Complex Required for Fertility in C. elegans. Molecular Cell, 2008, 31, 67-78.	9.7	528
31	Rapid tRNA Decay Can Result from Lack of Nonessential Modifications. Molecular Cell, 2006, 21, 87-96.	9.7	409
32	Depletion of Saccharomyces cerevisiae tRNAHis Guanylyltransferase Thg1p Leads to Uncharged tRNAHis with Additional m5C. Molecular and Cellular Biology, 2005, 25, 8191-8201.	2.3	87
33	tRNAHis maturation: An essential yeast protein catalyzes addition of a guanine nucleotide to the 5' end of tRNAHis. Genes and Development, 2003, 17, 2889-2901.	5.9	104