Juyoung Leem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2725544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nature Communications, 2020, 11, 1543.	12.8	251
2	Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nature Communications, 2020, 11, 5934.	12.8	182
3	Mechanically Self-Assembled, Three-Dimensional Graphene–Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors. Nano Letters, 2015, 15, 7684-7690.	9.1	151
4	A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale, 2017, 9, 4058-4065.	5.6	81
5	Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Materials Today, 2020, 34, 58-65.	14.2	65
6	Three-Dimensional Integration of Graphene via Swelling, Shrinking, and Adaptation. Nano Letters, 2015, 15, 4525-4531.	9.1	53
7	Interaction of 2D materials with liquids: wettability, electrochemical properties, friction, and emerging directions. NPG Asia Materials, 2020, 12, .	7.9	53
8	Colloidal Photonic Crystal Strain Sensor Integrated with Deformable Graphene Phototransducer. Advanced Functional Materials, 2019, 29, 1902216.	14.9	51
9	Ultraviolet to Mid-Infrared Emissivity Control by Mechanically Reconfigurable Graphene. Nano Letters, 2019, 19, 5086-5092.	9.1	48
10	Controllable Ag nanostructure patterning in a microfluidic channel for real-time SERS systems. Nanoscale, 2014, 6, 2895.	5.6	47
11	High-Mobility MoS ₂ Directly Grown on Polymer Substrate with Kinetics-Controlled Metal–Organic Chemical Vapor Deposition. ACS Applied Electronic Materials, 2019, 1, 608-616.	4.3	47
12	Photonic crystallization of two-dimensional MoS ₂ for stretchable photodetectors. Nanoscale, 2019, 11, 13260-13268.	5.6	43
13	Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application. Nanoscale, 2014, 6, 2840.	5.6	36
14	Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Materials, 2017, 4, 022002.	4.4	28
15	Uniaxially crumpled graphene as a platform for guided myotube formation. Microsystems and Nanoengineering, 2019, 5, 53.	7.0	26
16	High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K. Nature Communications, 2021, 12, 3926.	12.8	26
17	Plasmonic sensors based on graphene and graphene hybrid materials. Nano Convergence, 2022, 9, .	12.1	23
18	Vacuum-assisted microcontact printing (μCP) for aligned patterning of nano and biochemical materials. Journal of Materials Chemistry C, 2013, 1, 268-274.	5.5	18

JUYOUNG LEEM

#	Article	IF	CITATIONS
19	Photoinduced synthesis of Ag nanoparticles on ZnO nanowires for real-time SERS systems. RSC Advances, 2015, 5, 51-57.	3.6	17
20	Crack-assisted, localized deformation of van der Waals materials for enhanced strain confinement. 2D Materials, 2019, 6, 044001.	4.4	11
21	Large scale self-assembly of plasmonic nanoparticles on deformed graphene templates. Scientific Reports, 2021, 11, 12232.	3.3	10
22	Dynamic Radiative Thermal Management by Crumpled Graphene. , 2019, , .		1
23	A snapshot review on exciton engineering in deformed 2D materials. MRS Advances, 2020, 5, 3491-3506.	0.9	1
24	Hybrid Sensors: Colloidal Photonic Crystal Strain Sensor Integrated with Deformable Graphene Phototransducer (Adv. Funct. Mater. 33/2019). Advanced Functional Materials, 2019, 29, 1970229.	14.9	0