Lee D Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724338/publications.pdf

Version: 2024-02-01

184 papers 6,515 citations

43 h-index 71 g-index

184 all docs

184 docs citations

times ranked

184

6055 citing authors

#	Article	IF	CITATIONS
1	Multivariable optimization with desirability function for carbon porosity and methylene blue adsorption by watermelon rind activated carbon prepared by microwave assisted H3PO4. Biomass Conversion and Biorefinery, 2024, 14, 577-591.	4.6	21
2	Organotin (IV) complexes with sulphonyl hydrazide moiety. Design, synthesis, characterization, docking studies, cytotoxic and anti-leishmanial activity. Journal of Biomolecular Structure and Dynamics, 2022, 40, 12336-12346.	3.5	2
3	Preparation and characterization of salicylic acid grafted chitosan electrospun fibers. Carbohydrate Polymers, 2022, 275, 118751.	10.2	8
4	Process Optimization and Adsorptive Mechanism for Reactive Blue 19 Dye by Magnetic Crosslinked Chitosan/MgO/Fe3O4 Biocomposite. Journal of Polymers and the Environment, 2022, 30, 2759-2773.	5.0	52
5	Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. International Journal of Biological Macromolecules, 2022, 204, 62-75.	7. 5	62
6	An Overview of Modified Chitosan Adsorbents for the Removal of Precious Metals Species from Aqueous Media. Molecules, 2022, 27, 978.	3.8	25
7	Insight into the photodegradation mechanism of bisphenol-A by oxygen doped mesoporous carbon nitride under visible light irradiation and DFT calculations. RSC Advances, 2022, 12, 10409-10423.	3.6	9
8	Design of Sustainable Biomaterial Composite Adsorbents for Point-of-Use Removal of Lead Ions From Water. Frontiers in Water, 2022, 4, .	2.3	8
9	Methods for selenium removal from contaminated waters: a review. Environmental Chemistry Letters, 2022, 20, 2019-2041.	16.2	14
10	Magnetic biohybrid chitosan-ethylene glycol diglycidyl ether/magnesium oxide/Fe3O4 nanocomposite for textile dye removal: Box–Behnken design optimization and mechanism study. Journal of Polymer Research, 2022, 29, .	2.4	44
11	Photocatalytic Remediation of Harmful Alexandrium minutum Bloom Using Hybrid Chitosan-Modified TiO2 Films in Seawater: A Lab-Based Study. Catalysts, 2022, 12, 707.	3.5	2
12	Molecular structure and mild steel/HCl corrosion inhibition of 4,5-Dicyanoimidazole: Vibrational, electrochemical and quantum mechanical calculations. Journal of Molecular Structure, 2021, 1230, 129647.	3.6	43
13	Vanadium dioxide nanoparticles as a promising sorbent for controlled removal of waterborne fluoroquinolone ciprofloxacin. Materials Chemistry and Physics, 2021, 259, 123993.	4.0	17
14	Adsorption processes in biopolymer systems: fundamentals to practical applications., 2021,, 1-51.		14
15	Fabrication of Schiff's Base Chitosan-Glutaraldehyde/Activated Charcoal Composite for Cationic Dye Removal: Optimization Using Response Surface Methodology. Journal of Polymers and the Environment, 2021, 29, 2855-2868.	5.0	65
16	A Review on the Design and Hydration Properties of Natural Polymer-Based Hydrogels. Materials, 2021, 14, 1095.	2.9	106
17	Adsorption Studies of Waterborne Trihalomethanes Using Modified Polysaccharide Adsorbents. Molecules, 2021, 26, 1431.	3.8	5
18	A Review on Recent Progress of Glycan-Based Surfactant Micelles as Nanoreactor Systems for Chemical Synthesis Applications. Polysaccharides, 2021, 2, 168-186.	4.8	12

#	Article	IF	Citations
19	Effect of Graphene Oxide as a Reinforcement in a Bio-Epoxy Composite. Journal of Composites Science, 2021, 5, 91.	3.0	8
20	Binary Pectin-Chitosan Composites for the Uptake of Lanthanum and Yttrium Species in Aqueous MediaÂ. Micromachines, 2021, 12, 478.	2.9	13
21	Floating ZnO QDs-Modified TiO2/LLDPE Hybrid Polymer Film for the Effective Photodegradation of Tetracycline under Fluorescent Light Irradiation: Synthesis and Characterisation. Molecules, 2021, 26, 2509.	3.8	18
22	High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chinese Journal of Chemical Engineering, 2021, 32, 281-290.	3.5	206
23	Synthesis and Characterization of Pyridine-Grafted Copolymers of Acrylic Acid–Styrene Derivatives for Antimicrobial and Fluorescence Applications. Micromachines, 2021, 12, 672.	2.9	2
24	An Overview of the Design of Chitosan-Based Fiber Composite Materials. Journal of Composites Science, 2021, 5, 160.	3.0	14
25	Experimental and theoretical studies of hydrogen generation by binary metal (oxide)-graphene oxide composite materials. International Journal of Hydrogen Energy, 2021, 46, 19802-19813.	7.1	5
26	Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level. Molecules, 2021, 26, 3570.	3.8	9
27	Parameter optimization of tetracycline removal by vanadium oxide nano cuboids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126460.	4.7	15
28	Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering, 2021, 9, 105530.	6.7	130
29	Polyaniline/Biopolymer Composite Systems for Humidity Sensor Applications: A Review. Polymers, 2021, 13, 2722.	4.5	24
30	Counterion Effects in Metal Hybrid Biopolymer Materials for Sulfate Adsorption: An Experimental and Computational Study. ACS Applied Polymer Materials, 2021, 3, 4595-4606.	4.4	10
31	Suitability of bio-desiccants for energy wheels in HVAC applications. Building and Environment, 2021, 206, 108369.	6.9	1
32	Mesoporous TiO2 Implanted ZnO QDs for the Photodegradation of Tetracycline: Material Design, Structural Characterization and Photodegradation Mechanism. Catalysts, 2021, 11, 1205.	3.5	6
33	Anti-Methanogenic Effect of Phytochemicals on Methyl-Coenzyme M Reductase—Potential: In Silico and Molecular Docking Studies for Environmental Protection. Micromachines, 2021, 12, 1425.	2.9	6
34	Molecular imprinted polymers for the controlled uptake of sinapic acid from aqueous media. Food and Function, 2020, 11, 895-906.	4.6	16
35	Synthesis, characterization and adsorption behavior of sinapic acid imprinted polymer via precipitation polymerization. Journal of Polymer Research, 2020, 27, 1.	2.4	5
36	Uptake of Methylene Blue from Aqueous Solution by Pectin–Chitosan Binary Composites. Journal of Composites Science, 2020, 4, 95.	3.0	26

#	Article	IF	Citations
37	ZnO Surface Doping to Enhance the Photocatalytic Activity of Lithium Titanate/TiO2 for Methylene Blue Photodegradation under Visible Light Irradiation. Surfaces, 2020, 3, 301-318.	2.3	12
38	Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials. Polymers, 2020, 12, 1502.	4.5	21
39	Design of hybrid goethite nanocomposites as potential sorbents for lanthanum from aqueous media. Separation Science and Technology, 2020, , 1-15.	2.5	3
40	Modular Chitosan-Based Adsorbents for Tunable Uptake of Sulfate from Water. International Journal of Molecular Sciences, 2020, 21, 7130.	4.1	22
41	Flax Biomass Conversion via Controlled Oxidation: Facile Tuning of Physicochemical Properties. Bioengineering, 2020, 7, 38.	3.5	5
42	Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS Omega, 2020, 5, 6113-6121.	3.5	15
43	Comparison of the Moisture Adsorption Properties of Starch Particles and Flax Fiber Coatings for Energy Wheel Applications. ACS Omega, 2020, 5, 9529-9539.	3.5	15
44	Development of a small-scale test facility for effectiveness evaluation of fixed-bed regenerators. Applied Thermal Engineering, 2020, 174, 115263.	6.0	19
45	Modified Biopolymer Adsorbents for Column Treatment of Sulfate Species in Saline Aquifers. Materials, 2020, 13, 2408.	2.9	18
46	Friedel–Crafts benzylation of toluene catalyzed by ZnCl2/SiO2 heterogeneous catalyst to para- and ortho-mono-benzylated toluene. Journal of the Iranian Chemical Society, 2020, 17, 1615-1626.	2.2	5
47	Animal Biopolymer-Plant Biomass Composites: Synergism and Improved Sorption Efficiency. Journal of Composites Science, 2020, 4, 15.	3.0	11
48	Preparation of Multicomponent Biocomposites and Characterization of Their Physicochemical and Mechanical Properties. Journal of Composites Science, 2020, 4, 18.	3.0	9
49	Cu(II) Ion Adsorption by Aniline Grafted Chitosan and Its Responsive Fluorescence Properties. Molecules, 2020, 25, 1052.	3.8	21
50	Adsorption of Phosphate Dianions by Hybrid Inorganic–Biopolymer Polyelectrolyte Complexes: Experimental and Computational Studies. ACS Applied Polymer Materials, 2020, 2, 899-910.	4.4	18
51	Saline-Responsive and Hydrogen Bond Gating Effects in Self-Healing Polyaniline. ACS Applied Polymer Materials, 2020, 2, 2311-2318.	4.4	17
52	Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters, 2019, 17, 195-213.	16.2	611
53	Simultaneous adsorption of lanthanum and yttrium from aqueous solution by durian rind biosorbent. Environmental Monitoring and Assessment, 2019, 191, 488.	2.7	26
54	Chitosan for direct bioflocculation of wastewater. Environmental Chemistry Letters, 2019, 17, 1603-1621.	16.2	90

#	Article	IF	Citations
55	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	16.2	94
56	Inclusion Complexes of Melphalan with Gemini-Conjugated \hat{l}^2 -Cyclodextrin: Physicochemical Properties and Chemotherapeutic Efficacy in In-Vitro Tumor Models. Pharmaceutics, 2019, 11, 427.	4. 5	4
57	Water Vapor Adsorption–Desorption Behavior of Surfactant-Coated Starch Particles for Commercial Energy Wheels. ACS Omega, 2019, 4, 14378-14389.	3.5	12
58	Gas and Solution Uptake Properties of Graphene Oxide-Based Composite Materials: Organic vs. Inorganic Cross-Linkers. Journal of Composites Science, 2019, 3, 80.	3.0	8
59	Surface-Modified Chitosan: An Adsorption Study of a "Tweezer-Like―Biopolymer with Fluorescein. Surfaces, 2019, 2, 468-484.	2.3	21
60	Surfactant Surface-Patterned Starch Particles for Adsorption-Based Applications: The Role of Sabatier's Principle. ACS Applied Polymer Materials, 2019, 1, 2787-2796.	4.4	5
61	Mechanical properties of graphene oxide-based composite layered-materials. Materials Chemistry and Physics, 2019, 234, 81-89.	4.0	13
62	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	1.1	12
63	Chitosan for Direct Bioflocculation Processes. Sustainable Agriculture Reviews, 2019, , 335-380.	1.1	7
64	A Spectroscopic Study of Solid-Phase Chitosan/Cyclodextrin-Based Electrospun Fibers. Fibers, 2019, 7, 48.	4.0	9
65	Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation. Surfaces and Interfaces, 2019, 16, 76-84.	3.0	142
66	A porous Î ² -cyclodextrin-based terpolymer fluorescence sensor for <i>in situ</i> trinitrophenol detection. RSC Advances, 2019, 9, 8073-8080.	3.6	14
67	Kinetics, isotherm, thermodynamic and bioperformance of defluoridation of water using praseodymium-modified chitosan. Journal of Environmental Chemical Engineering, 2019, 7, 103498.	6.7	13
68	Optimisation of orthophosphate and turbidity removal using an amphoteric chitosan-based flocculant–ferric chloride coagulant system. Environmental Chemistry, 2019, 16, 599.	1.5	16
69	Recent advances for sustainable production of levulinic acid in ionic liquids from biomass: Current scenario, opportunities and challenges. Renewable and Sustainable Energy Reviews, 2019, 102, 266-284.	16.4	69
70	Conversion of Malaysian low-rank coal to mesoporous activated carbon: Structure characterization and adsorption properties. Chinese Journal of Chemical Engineering, 2019, 27, 1716-1727.	3.5	73
71	A spectroscopic study of a cyclodextrin-based polymer and the "molecular accordion―effect. Canadian Journal of Chemistry, 2019, 97, 442-450.	1.1	1
72	A structural study of self-assembled chitosan-based sponge materials. Carbohydrate Polymers, 2019, 206, 685-693.	10.2	7

#	Article	IF	Citations
73	Simple and Low-Cost Setup for Measurement of the Density of a Liquid. Journal of Chemical Education, 2019, 96, 175-179.	2.3	5
74	Renewable Starch Carriers with Switchable Adsorption Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 4603-4613.	6.7	21
75	Design of amphoteric chitosan flocculants for phosphate and turbidity removal in wastewater. Carbohydrate Polymers, 2018, 189, 360-370.	10.2	62
76	Cyclodextrin based polymer sorbents for micro-solid phase extraction followed by liquid chromatography tandem mass spectrometry in determination of endogenous steroids. Journal of Chromatography A, 2018, 1543, 23-33.	3.7	22
77	Starch Particles, Energy Harvesting, and the "Goldilocks Effect― ACS Omega, 2018, 3, 3796-3803.	3.5	9
78	Phenolic Pollutant Uptake Properties of Molecular Templated Polymers Containing \hat{l}^2 -Cyclodextrin. Journal of Physical Chemistry B, 2018, 122, 4748-4757.	2.6	17
79	Water-insoluble β-cyclodextrin–epichlorohydrin polymers for removal of pollutants from aqueous solutions by sorption processes using batch studies: A review of inclusion mechanisms. Progress in Polymer Science, 2018, 78, 1-23.	24.7	193
80	Ultra-sonication assisted cross-linking of cellulose polymers. Ultrasonics Sonochemistry, 2018, 42, 567-576.	8.2	25
81	Salt-Responsive Fe ₃ O ₄ Nanocomposites and Phase Behavior in Water. Langmuir, 2018, 34, 341-350.	3.5	12
82	Spectroscopic and Thermodynamic Study of Biopolymer Adsorption Phenomena in Heterogeneous Solid–Liquid Systems. ACS Omega, 2018, 3, 15370-15379.	3. 5	13
83	Cyclodextrin-Based Polymer-Supported Bacterium for the Adsorption and in-situ Biodegradation of Phenolic Compounds. Frontiers in Chemistry, 2018, 6, 403.	3.6	5
84	" <i>Pillaring Effects</i> ―in Cross-Linked Cellulose Biopolymers: A Study of Structure and Properties. International Journal of Polymer Science, 2018, 2018, 1-13.	2.7	17
85	Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega, 2018, 3, 13045-13054.	3.5	98
86	Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2018, , 23-71.	0.5	83
87	Redox-Responsive Polymer Template as an Advanced Multifunctional Catalyst Support for Silver Nanoparticles. Langmuir, 2018, 34, 10560-10568.	3. 5	38
88	Solubilized Chitosan Biopolymers for Sequestration of Organic Acids in Aquatic Environments after Biodegradation in a Constructed Wetland Treatment System. International Journal of Technology, 2018, 9, 1140.	0.8	2
89	Vapor Adsorption Transient Test Facility for Dehumidification and Desorption Studies. International Journal of Technology, 2018, 9, 1092.	0.8	6
90	Adsorption of Lanthanide lons from Aqueous Solution in Multicomponent Systems using Activated Carbon from Banana Peels (Musa paradisiaca L.). International Journal of Technology, 2018, 9, 1132.	0.8	13

#	Article	IF	CITATIONS
91	Vapour and Solution Uptake Properties of Starch and Cellulose Biopolymers. Journal of Geoscience and Environment Protection, 2018, 06, 101-117.	0.5	4
92	A Kinetic Uptake Study of Roxarsone Using Cross-Linked Chitosan Beads. Industrial & Engineering Chemistry Research, 2017, 56, 1704-1712.	3.7	26
93	Flocculation Optimization of Orthophosphate with FeCl3and Alginate Using the Box–Behnken Response Surface Methodology. Industrial & Engineering Chemistry Research, 2017, 56, 3145-3155.	3.7	39
94	Oxidation of Chitosan in Solution by Photocatalysis and Product Characterization. Journal of Polymers and the Environment, 2017, 25, 828-835.	5.0	16
95	Miscanthus Biomass for the Sustainable Fractionation of Ethanol–Water Mixtures. ACS Sustainable Chemistry and Engineering, 2017, 5, 2970-2980.	6.7	9
96	Raman and DRIFT spectra, vibrational assignments and quantum mechanical calculations of centrosymmetric meso -2,3-Dimercaptosuccinic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 183, 275-283.	3.9	7
97	Synthesis and characterization of cellulose-goethite composites and their adsorption properties with roxarsone. Carbohydrate Polymers, 2017, 169, 282-294.	10.2	39
98	Characterization of the Physicochemical Properties of β-Cyclodextrin–Divinyl Sulfone Polymer Carrier–Bile Acid Systems. Molecular Pharmaceutics, 2017, 14, 2616-2623.	4.6	4
99	Biopolymer Flocculants and Oat Hull Biomass To Aid the Removal of Orthophosphate in Wastewater Treatment. Industrial & Engineering Chemistry Research, 2017, 56, 37-46.	3.7	21
100	Microwave-assisted preparation of mesoporous-activated carbon from coconut (<i>Cocos) Tj ETQq0 0 0 rgBT /C Chemical Engineering Communications, 2017, 204, 1143-1156.</i>	Overlock 10 2.6	O Tf 50 387 To 85
101	Study of Dehumidification and Regeneration in a Starch Coated Energy Wheel. ACS Sustainable Chemistry and Engineering, 2017, 5, 221-231.	6.7	11
102	Phosphate uptake studies of cross-linked chitosan bead materials. Journal of Colloid and Interface Science, 2017, 485, 201-212.	9.4	58
103	Physicochemical Properties and the Gelation Process of Supramolecular Hydrogels: A Review. Gels, 2017, 3, 1.	4.5	76
104	Investigation of Self-Assembly Processes for Chitosan-Based Coagulant-Flocculant Systems: A Mini-Review. International Journal of Molecular Sciences, 2016, 17, 1662.	4.1	55
105	The Role of Inclusion Binding Contributions for β-Cyclodextrin Polymers Cross-Linked with Divinyl Sulfone?—A Comment on Morales-Sanfrutos et al. Entitled "Divinyl Sulfone Cross-Linked Cyclodextrin-Based Polymeric Materials: Synthesis and Applications as Sorbents and Encapsulating Agents― Molecules. 2015, 20, 3565–3581 Molecules. 2016, 21, 93.	3.8	6
106	Quaternized Cellulose Hydrogels as Sorbent Materials and Pickering Emulsion Stabilizing Agents. Materials, 2016, 9, 645.	2.9	29
107	Computational (DFT and MP2) and spectral interpretations, normal coordinate analysis, force constants and barriers to internal rotations of Trimethylacetonitrile. Journal of Theoretical and Computational Chemistry, 2016, 15, 1650034.	1.8	2
108	Preparation and Characterization of a Polymer-Based "Molecular Accordion― Langmuir, 2016, 32, 3066-3078.	3.5	14

#	Article	IF	Citations
109	Investigation of the Adsorption Processes of Fluorocarbon and Hydrocarbon Anions at the Solid–Solution Interface of Macromolecular Imprinted Polymer Materials. Journal of Physical Chemistry C, 2016, 120, 6553-6568.	3.1	26
110	Modular Cross-Linked Chitosan Beads with Calcium Doping for Enhanced Adsorptive Uptake of Organophosphate Anions. Industrial & Engineering Chemistry Research, 2016, 55, 11706-11715.	3.7	35
111	Macromolecular hydration phenomena. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1851-1866.	3.6	10
112	NMR Investigation of the Fractionation of Water–Ethanol Mixtures with Starch and Its Cross-Linked Forms. Energy & Starch and Its Cross-Linked Forms. Energy & Starch and Its Cross-Linked Forms.	5.1	6
113	Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan–Cellulose Composites and Their Anion Uptake Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 33197-33209.	8.0	56
114	Crossâ€inked chitosan beads for phosphate removal from aqueous solution. Journal of Applied Polymer Science, 2016, 133, .	2.6	55
115	Synthesis and characterization of surface-modified mesoporous silica materials with \hat{l}^2 -cyclodextrin. Cogent Chemistry, 2016, 2, 1132984.	2.5	25
116	Magnetite/Polymer Brush Nanocomposites with Switchable Uptake Behavior Toward Methylene Blue. ACS Applied Materials & Diterfaces, 2016, 8, 5595-5607.	8.0	73
117	Adsorption of methylene blue onto activated carbon developed from biomass waste by H ₂ SO ₄ activation: kinetic, equilibrium and thermodynamic studies. Desalination and Water Treatment, 2016, 57, 25194-25206.	1.0	117
118	Sorption Study of a Starch Biopolymer as an Alternative Desiccant for Energy Wheels. ACS Sustainable Chemistry and Engineering, 2016, 4, 1262-1273.	6.7	22
119	Raman and infrared spectra, normal coordinate analysis and ab initio calculations of 4-Amino-2-chloropyrimidine-5-carbonitrile. Journal of Molecular Structure, 2016, 1115, 85-93.	3.6	6
120	Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydrate Polymers, 2016, 136, 329-340.	10.2	113
121	Kinetic study on urea uptake with chitosan based sorbent materials. Carbohydrate Polymers, 2016, 135, 180-186.	10.2	45
122	Kinetic Uptake Studies of Powdered Materials in Solution. Nanomaterials, 2015, 5, 969-980.	4.1	30
123	Nano-Sized Cyclodextrin-Based Molecularly Imprinted Polymer Adsorbents for Perfluorinated Compounds—A Mini-Review. Nanomaterials, 2015, 5, 981-1003.	4.1	57
124	Investigation of Chitosan-PVA Composite Films and Their Adsorption Properties. Journal of Geoscience and Environment Protection, 2015, 03, 78-84.	0.5	34
125	Raman, infrared and NMR spectral analysis, normal coordinate analysis and theoretical calculations of 5-(methylthio)-1,3,4-thiadiazole-2(3H)-thione and its thiol tautomer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 339-349.	3.9	16
126	Counterion Anchoring Effect on the Structure of the Solid-State Inclusion Complexes of \hat{l}^2 -Cyclodextrin and Sodium Perfluorooctanoate. Journal of Physical Chemistry C, 2015, 119, 22225-22243.	3.1	18

#	Article	IF	Citations
127	Thermodynamic Properties of Inclusion Complexes between β-Cyclodextrin and Naphthenic Acid Fraction Components. Energy & Energy	5.1	21
128	A $<$ sup $>$ 1 $<$ /sup $>$ H NMR Study of Host/Guest Supramolecular Complexes of a Curcumin Analogue with \hat{l}^2 -Cyclodextrin and a \hat{l}^2 -Cyclodextrin-Conjugated Gemini Surfactant. Molecular Pharmaceutics, 2015, 12, 2993-3006.	4.6	20
129	Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon. Journal of Colloid and Interface Science, 2015, 457, 388-397.	9.4	35
130	A novel solid-state fractionation of naphthenic acid fraction components from oil sands process-affected water. Chemosphere, 2015, 136, 252-258.	8.2	19
131	Design and characterization of chitosan-based composite particles with tunable interfacial properties. Carbohydrate Polymers, 2015, 132, 369-377.	10.2	6
132	Tuning the physicochemical properties of \hat{l}^2 -cyclodextrin based polyurethanes via cross-linking conditions. Microporous and Mesoporous Materials, 2015, 214, 23-31.	4.4	25
133	A volumetric and NMR study of cyclodextrin-inhalation anesthetic complexes in aqueous solutions. Canadian Journal of Chemistry, 2015, 93, 815-821.	1.1	8
134	Nuclear Magnetic Resonance Investigation of the Fractionation of Water–Ethanol Mixtures with Cellulose and Its Cross-Linked Biopolymer Forms. Energy & Energy & 2015, 29, 6512-6521.	5.1	9
135	Raman and infrared spectra, crystal structure and DFT calculations of novel N-benzyl-4-(3-benzylcarbamoyl-propyldisulfanyl)-butyramide: [C6H5CH2NHC(O)(CH2)4S]2. Research on Chemical Intermediates, 2015, 41, 4761-4784.	2.7	2
136	Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support. Materials, 2014, 7, 1880-1898.	2.9	36
137	Novel materials for environmental remediation of oil sands contaminants. Reviews on Environmental Health, 2014, 29, 5-8.	2.4	12
138	Chitosan-glutaraldehyde copolymers and their sorption properties. Carbohydrate Polymers, 2014, 109, 92-101.	10.2	137
139	Adsorption study of an organo-arsenical with chitosan-based sorbents. Journal of Colloid and Interface Science, 2014, 420, 136-144.	9.4	71
140	Atmospheric Pressure Photoionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Tunable Carbohydrate-Based Materials for Sorption of Oil Sands Naphthenic Acids. Energy & Fuels, 2014, 28, 1611-1616.	5.1	20
141	Polysaccharide-based materials and their adsorption properties in aqueous solution. Carbohydrate Polymers, 2014, 113, 471-479.	10.2	58
142	Synthesis and characterization of magnetite and activated carbon binary composites. Synthetic Metals, 2014, 197, 8-17.	3.9	32
143	Characterization and Dynamic Properties for the Solid Inclusion Complexes of \hat{l}^2 -Cyclodextrin and Perfluorobutyric Acid. Journal of Physical Chemistry C, 2014, 118, 15460-15473.	3.1	12
144	Preparation and sorption properties of tunable polyester copolymers containing β yclodextrin. Journal of Applied Polymer Science, 2013, 127, 4889-4898.	2.6	2

#	Article	IF	Citations
145	Macromolecular sorbent materials for urea capture. Journal of Applied Polymer Science, 2013, 128, 667-675.	2.6	36
146	Preparation and sorption studies of β-cyclodextrin–chitosan–glutaraldehyde terpolymers. Journal of Colloid and Interface Science, 2013, 393, 271-277.	9.4	47
147	Tunable macromolecular-based materials for the adsorption of perfluorooctanoic and octanoic acid anions. Journal of Colloid and Interface Science, 2013, 402, 196-203.	9.4	53
148	Colloidal properties of single component naphthenic acids and complex naphthenic acid mixtures. Journal of Colloid and Interface Science, 2013, 395, 104-110.	9.4	15
149	Tautomerism, Raman, infrared and ultraviolet–visible spectra, vibrational assignments, MP2 and B3LYP calculations of dienol 3,4-dihydroxypyridine, keto-enol 3-hydroxypyridin-4-one and keto-enol dimer. Journal of Molecular Structure, 2013, 1043, 52-67.	3.6	7
150	Enzymatic activity studies of Pseudomonas cepacia lipase adsorbed onto copolymer supports containing \hat{l}^2 -cyclodextrin. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 105-112.	1.8	35
151	Characterization and Dynamic Properties for the Solid Inclusion Complexes of \hat{I}^2 -Cyclodextrin and Perfluorooctanoic Acid. Journal of Physical Chemistry B, 2013, 117, 8269-8282.	2.6	34
152	Infrared and NMR spectra, tautomerism, vibrational assignment, normal coordinate analysis, and quantum mechanical calculations of 4-amino-5-pyrimidinecarbonitrile. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 111, 277-289.	3.9	10
153	Preparation and sorption studies of glutaraldehyde cross-linked chitosan copolymers. Journal of Colloid and Interface Science, 2013, 395, 205-211.	9.4	70
154	Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Characterization of Tunable Carbohydrate-Based Materials for Sorption of Oil Sands Naphthenic Acids. Energy & Samp; Fuels, 2013, 27, 1772-1778.	5.1	22
155	Tunable Polymeric Sorbent Materials for Fractionation of Model Naphthenates. Journal of Physical Chemistry B, 2013, 117, 3659-3666.	2.6	16
156	Cyclodextrin-Based Microcapsule Materials - Their Preparation and Physiochemical Properties. Current Organic Chemistry, 2013, 17, 14-21.	1.6	20
157	Preparation and sorption studies of polyester microsphere copolymers containing \hat{I}^2 -Cyclodextrin. Journal of Colloid and Interface Science, 2012, 387, 250-261.	9.4	26
158	Synthetically engineered chitosan-based materials and their sorption properties with methylene blue in aqueous solution. Journal of Colloid and Interface Science, 2012, 388, 225-234.	9.4	41
159	Porous Copolymer Resins: Tuning Pore Structure and Surface Area with Non Reactive Porogens. Nanomaterials, 2012, 2, 163-186.	4.1	55
160	Preparation and sorption studies of microsphere copolymers containing $\hat{l}^2 \hat{a} \in \mathfrak{c}$ yclodextrin and poly(acrylic acid). Journal of Applied Polymer Science, 2012, 125, 1841-1854.	2.6	10
161	Evaluation of the accessible inclusion sites in copolymer materials containing \hat{l}^2 -cyclodextrin. Carbohydrate Polymers, 2012, 87, 1241-1248.	10.2	40
162	Sequestration of naphthenic acids from aqueous solution using \hat{l}^2 -cyclodextrin-based polyurethanes. Physical Chemistry Chemical Physics, 2011, 13, 1112-1122.	2.8	35

#	Article	IF	Citations
163	Formation of Host-Guest Complexes of \hat{l}^2 -Cyclodextrin and Perfluorooctanoic Acid. Journal of Physical Chemistry B, 2011, 115, 9511-9527.	2.6	61
164	Sorption of Aromatic Compounds with Copolymer Sorbent Materials Containing \hat{l}^2 -Cyclodextrin. Materials, 2011, 4, 1528-1542.	2.9	30
165	Design and characterization of novel \hat{l}^2 -cyclodextrin based copolymer materials. Carbohydrate Research, 2011, 346, 219-229.	2.3	64
166	Investigation of the sorption properties of \hat{l}^2 -cyclodextrin-based polyurethanes with phenolic dyes and naphthenates. Journal of Colloid and Interface Science, 2011, 356, 217-226.	9.4	52
167	Surface area and pore structure properties of urethane-based copolymers containing \hat{l}^2 -cyclodextrin. Journal of Colloid and Interface Science, 2011, 357, 215-222.	9.4	72
168	DETERMINATION OF HOST-GUEST BINDING SITES FOR \hat{l}^2 -CYCLODEXTRIN URETHANE COPOLYMERS. , 2010, , .		0
169	Preparation and sorption studies of $\hat{l}^2 \hat{a} \in \mathcal{E}$ y clodextrin/epichlorohydrin copolymers. Journal of Applied Polymer Science, 2010, 116, 2982-2989.	2.6	23
170	Estimation of the surface accessible inclusion sites of \hat{l}^2 -cyclodextrin based copolymer materials. Carbohydrate Polymers, 2010, 80, 186-196.	10.2	70
171	Sorption of Agrochemical Model Compounds by Sorbent Materials Containing \hat{l}^2 -cyclodextrin. Journal of Agromedicine, 2010, 15, 105-116.	1.5	13
172	Surface-modified activated carbon with β-cyclodextrinâ€"Part II. Adsorption properties. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1793-1803.	1.7	12
173	Surface modified activated carbon with \hat{l}^2 -cyclodextrin \hat{a} Part I. Synthesis and characterization. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2010, 45, 1775-1792.	1.7	6
174	Electrospray ionization mass spectrometry studies of cyclodextrinâ€carboxylate ion inclusion complexes. Rapid Communications in Mass Spectrometry, 2009, 23, 3703-3712.	1.5	17
175	A spectral displacement study of cyclodextrin/naphthenic acids inclusion complexes. Canadian Journal of Chemistry, 2009, 87, 1747-1756.	1.1	15
176	Novel materials for environmental remediation of tailing pond waters containing naphthenic acids. Chemical Engineering Research and Design, 2008, 86, 237-243.	5.6	55
177	Screening of oil sands naphthenic acids by UV-Vis absorption and fluorescence emission spectrophotometry. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 1700-1705.	1.7	42
178	Effect of Antifreeze Proteins on the Nucleation, Growth, and the Memory Effect during Tetrahydrofuran Clathrate Hydrate Formation. Journal of the American Chemical Society, 2006, 128, 2844-2850.	13.7	190
179	Investigation of the Pore Structure of As-Prepared and Purified HiPco Single-Walled Carbon Nanotubes by N2/Ar AdsorptionImplication for H2Storage. Nano Letters, 2002, 2, 343-346.	9.1	65
180	Solid Polyrotaxanes of Polyethylene Glycol and Cyclodextrins: The Single Crystal X-ray Structure of PEGâ^β-cyclodextrinâ€. Journal of the American Chemical Society, 2000, 122, 12375-12376.	13.7	113

#	Article	IF	CITATION
181	A ¹ H NMR study of cyclodextrin - hydrocarbon surfactant inclusion complexes in aqueous solutions. Canadian Journal of Chemistry, 1998, 76, 25-34.	1.1	25
182	A spectral displacement study of the binding constants of cyclodextrin–hydrocarbon and –fluorocarbon surfactant inclusion complexes. Canadian Journal of Chemistry, 1997, 75, 927-933.	1.1	54
183	A Volumetric Study of \hat{I}^2 -Cyclodextrin/Hydrocarbon and \hat{I}^2 -Cyclodextrin/Fluorocarbon Surfactant Inclusion Complexes in Aqueous Solutions. Journal of Physical Chemistry B, 1997, 101, 9270-9279.	2.6	71
184	Synthesis and characterization of hausmannite ―activated carbon nanocomposites for removal of lead from aqueous solutions. Chemical Engineering and Technology, 0, , .	1.5	1