Thomas Henry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724110/publications.pdf

Version: 2024-02-01

66343 58581 7,407 85 42 82 citations h-index g-index papers 96 96 96 10228 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Transcriptional and Epigenetic Regulation of Gasdermins. Journal of Molecular Biology, 2022, 434, 167253.	4.2	17
2	Evidence for Constitutive Microbiota-Dependent Short-Term Control of Food Intake in Mice: Is There a Link with Inflammation, Oxidative Stress, Endotoxemia, and GLP-1?. Antioxidants and Redox Signaling, 2022, 37, 349-369.	5.4	3
3	Detection and Prediction of Macrophage Activation Syndrome in Still's Disease. Journal of Clinical Medicine, 2022, 11, 206.	2.4	11
4	Functional Assessment of Disease-Associated Pyrin Variants. Methods in Molecular Biology, 2022, , 179-195.	0.9	4
5	Fast diagnostic test for familial Mediterranean fever based on a kinase inhibitor. Annals of the Rheumatic Diseases, 2021, 80, 128-132.	0.9	16
6	The Inflammasome Components NLRP3 and ASC Act in Concert with IRGM To Rearrange the Golgi Apparatus during Hepatitis C Virus Infection. Journal of Virology, 2021, 95, .	3.4	19
7	The Inflammasome Adaptor ASC Delays UV-Induced Skin Tumorigenesis in Beta HPV38 E6 and E7 Transgenic Mice. Journal of Investigative Dermatology, 2021, 141, 236-238.e2.	0.7	0
8	Amoebae can promote the survival of $\langle i \rangle$ Francisella $\langle i \rangle$ species in the aquatic environment. Emerging Microbes and Infections, 2021, 10, 277-290.	6.5	10
9	LACC1 deficiency links juvenile arthritis with autophagy and metabolism in macrophages. Journal of Experimental Medicine, 2021, 218, .	8.5	17
10	NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nature Communications, 2021, 12, 5862.	12.8	52
11	Macrophages Demonstrate Guanylate-Binding Protein-Dependent and Bacterial Strain-Dependent Responses to Francisella tularensis. Frontiers in Cellular and Infection Microbiology, 2021, 11, 784101.	3.9	3
12	Irgm2 and Gateâ€16 cooperatively dampen Gramâ€negative bacteriaâ€induced caspaseâ€11 response. EMBO Reports, 2020, 21, e50829.	4.5	45
13	Pre-existing antibody-mediated adverse effects prevent the clinical development of a bacterial anti-inflammatory protein. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	2
14	Low glycosylated ferritin is a sensitive biomarker of severe COVID-19. Cellular and Molecular Immunology, 2020, 17, 1183-1185.	10.5	7
15	Guanylate-Binding Proteins Are Critical for Effective Control of Francisella tularensis Strains in a Mouse Co-Culture System of Adaptive Immunity. Frontiers in Cellular and Infection Microbiology, 2020, 10, 594063.	3.9	5
16	Transcriptional Regulation of Inflammasomes. International Journal of Molecular Sciences, 2020, 21, 8087.	4.1	43
17	Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmunity Reviews, 2020, 19, 102567.	5.8	521
18	Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nature Immunology, 2020, 21, 880-891.	14.5	182

#	Article	IF	Citations
19	Pyrin dephosphorylation is sufficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Molecular Medicine, 2019, 11, e10547.	6.9	54
20	Necrotizing Soft Tissue Infection Staphylococcus aureus but not S. pyogenes Isolates Display High Rates of Internalization and Cytotoxicity Toward Human Myoblasts. Journal of Infectious Diseases, 2019, 220, 710-719.	4.0	8
21	Intracellular bacteria engage a STING–TBK1–MVB12b pathway to enable paracrine cGAS–STING signalling. Nature Microbiology, 2019, 4, 701-713.	13.3	100
22	Fulminant Staphylococcal Infections. , 2019, , 712-722.		0
23	Critical Role of a Sheath Phosphorylation Site On the Assembly and Function of an Atypical Type VI Secretion System. Molecular and Cellular Proteomics, 2019, 18, 2418-2432.	3.8	8
24	A genomeâ€wide screen identifies IRF2 as a key regulator of caspaseâ€4 in human cells. EMBO Reports, 2019, 20, e48235.	4.5	58
25	<scp>LPS</scp> targets host guanylateâ€binding proteins to the bacterial outer membrane for nonâ€canonical inflammasome activation. EMBO Journal, 2018, 37, .	7.8	184
26	Deletion of Inflammasome Components Is Not Sufficient To Prevent Fatal Inflammation in Models of Familial Hemophagocytic Lymphohistiocytosis. Journal of Immunology, 2018, 200, 3769-3776.	0.8	5
27	The pyrin inflammasome: from sensing RhoA GTPases-inhibiting toxins to triggering autoinflammatory syndromes. Pathogens and Disease, 2018, 76, .	2.0	40
28	Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nature Communications, 2018, 9, 242.	12.8	144
29	Geoepidemiology and Immunologic Features of Autoinflammatory Diseases: a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2018, 54, 454-479.	6.5	27
30	Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology, 2018, 57, 100-111.	1.9	67
31	Fulminant Staphylococcal Infections. Microbiology Spectrum, 2018, 6, .	3.0	5
32	A proximity-dependent biotinylation (BioID) approach flags the p62/sequestosome-1 protein as a caspase-1 substrate. Journal of Biological Chemistry, 2018, 293, 12563-12575.	3.4	13
33	Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton–Valentine leukocidin. Nature Microbiology, 2018, 3, 708-717.	13.3	63
34	Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathogens, 2018, 14, e1007158.	4.7	21
35	Multiple <i>Pseudomonas</i> species secrete exolysinâ€like toxins and provoke Caspaseâ€lâ€dependent macrophage death. Environmental Microbiology, 2017, 19, 4045-4064.	3.8	36
36	IFN- \hat{l}^3 extends the immune functions of Guanylate Binding Proteins to inflammasome-independent antibacterial activities during Francisella novicida infection. PLoS Pathogens, 2017, 13, e1006630.	4.7	41

#	Article	IF	Citations
37	An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy. Frontiers in Cellular and Infection Microbiology, 2016, 6, 152.	3.9	18
38	Human Monocyte-Derived Osteoclasts Are Targeted by Staphylococcal Pore-Forming Toxins and Superantigens. PLoS ONE, 2016, 11, e0150693.	2.5	19
39	Characterization of the Inflammasome in Human Kupffer Cells in Response to Synthetic Agonists and Pathogens. Journal of Immunology, 2016, 197, 356-367.	0.8	53
40	AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4671-80.	7.1	106
41	Francisella Inflammasomes: Integrated Responses to a CytosolicÂStealthÂBacterium. Current Topics in Microbiology and Immunology, 2016, 397, 229-256.	1.1	16
42	Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathogens, 2016, 12, e1005821.	4.7	41
43	Catch me if you can. ELife, 2016, 5, .	6.0	9
44	Francisella IgIG protein and the DUF4280 proteins: PAAR-like proteins in non-canonical Type VI secretion systems?. Microbial Cell, 2016, 3, 576-578.	3.2	1
45	Treatment of adult-onset Still's disease: a review. Therapeutics and Clinical Risk Management, 2015, 11, 33.	2.0	73
46	Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nature Immunology, 2015, 16, 476-484.	14.5	291
47	Importance of Host Cell Arginine Uptake in Francisella Phagosomal Escape and Ribosomal Protein Amounts*. Molecular and Cellular Proteomics, 2015, 14, 870-881.	3.8	24
48	Differential Interaction of the Staphylococcal Toxins Panton–Valentine Leukocidin and γ-Hemolysin CB with Human C5a Receptors. Journal of Immunology, 2015, 195, 1034-1043.	0.8	69
49	Inherited anomalies of innate immune receptors in pediatric-onset inflammatory diseases. Autoimmunity Reviews, 2015, 14, 1147-1153.	5.8	13
50	Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host and Microbe, 2015, 18, 363-370.	11.0	88
51	Pathogenesis of adult-onset Still's disease: new insights from the juvenile counterpart. Immunologic Research, 2015, 61, 53-62.	2.9	148
52	Glutamate Utilization Couples Oxidative Stress Defense and the Tricarboxylic Acid Cycle in Francisella Phagosomal Escape. PLoS Pathogens, 2014, 10, e1003893.	4.7	49
53	Asparagine assimilation is critical for intracellular replication and dissemination of <i>Francisella</i> <cellular 16,="" 2014,="" 434-449.<="" microbiology,="" td=""><td>2.1</td><td>49</td></cellular>	2.1	49
54	O107 ANTIVIRAL ACTIVITY OF VARIOUS INTERFERONS (IFNS) AND INFLAMMATORY CYTOKINES IN RELEVANT HEPATOCYTE MODELS OF PERSISTENT HEPATITIS B VIRUS (HBV) INFECTION. Journal of Hepatology, 2014, 60, S43.	3.7	0

#	Article	IF	Citations
55	The staphylococcal toxins \hat{I}^3 -haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nature Communications, 2014, 5, 5438.	12.8	126
56	T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. Journal of Experimental Medicine, 2014, 211, 563-577.	8.5	462
57	Caspase- 11 Controls Interleukin- $1\hat{l}^2$ Release through Degradation of TRPC1. Cell Reports, 2014, 6, 1122-1128.	6.4	86
58	Kineret \hat{A}^{\otimes} /IL-1ra Blocks the IL-1/IL-8 Inflammatory Cascade during Recombinant Panton Valentine Leukocidin-Triggered Pneumonia but Not during S. aureus Infection. PLoS ONE, 2014, 9, e97546.	2.5	24
59	Inflammasome activation restricts <i>Legionella pneumophila</i> replication in primary microglial cells through flagellin detection. Glia, 2013, 61, 539-549.	4.9	39
60	The Staphylococcal Toxin Panton-Valentine Leukocidin Targets Human C5a Receptors. Cell Host and Microbe, 2013, 13, 584-594.	11.0	250
61	Regulation of Mouse NK Cell Development and Function by Cytokines. Frontiers in Immunology, 2013, 4, 450.	4.8	155
62	ASC Controls IFN-γ Levels in an IL-18–Dependent Manner in Caspase-1–Deficient Mice Infected with Francisella novicida. Journal of Immunology, 2013, 191, 3847-3857.	0.8	31
63	S1PR5 is pivotal for the homeostasis of patrolling monocytes. European Journal of Immunology, 2013, 43, 1667-1675.	2.9	49
64	Caspase-1 activity affects AIM2 speck formation/stability through a negative feedback loop. Frontiers in Cellular and Infection Microbiology, 2013, 3, 14.	3.9	13
65	AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death and Differentiation, 2012, 19, 1709-1721.	11.2	212
66	Staphylococcus aureus Hemolysins, bi-component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors?. Frontiers in Cellular and Infection Microbiology, 2012, 2, 12.	3.9	315
67	Cross-talk between Staphylococcus aureus leukocidins-intoxicated macrophages and lung epithelial cells triggers chemokine secretion in an inflammasome-dependent manner. Cellular Microbiology, 2012, 14, 1019-1036.	2.1	99
68	Absent in melanoma 2 is required for innate immune recognition of <i>Francisella tularensis</i> Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9771-9776.	7.1	454
69	Type I IFN Signaling Constrains IL-17A/F Secretion by $\hat{I}^3\hat{I}^*T$ Cells during Bacterial Infections. Journal of Immunology, 2010, 184, 3755-3767.	0.8	134
70	The Virulence Protein SopD2 Regulates Membrane Dynamics of Salmonella-Containing Vacuoles. PLoS Pathogens, 2010, 6, e1001002.	4.7	67
71	Contribution of Flagellin Pattern Recognition to Intestinal Inflammation during <i>Salmonella enterica </i> Serotype Typhimurium Infection. Infection and Immunity, 2009, 77, 1904-1916.	2.2	86
72	Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nature Immunology, 2008, 9, 1171-1178.	14.5	428

#	Article	IF	CITATIONS
73	In vivo negative selection screen identifies genes required for Francisella virulence. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6037-6042.	7.1	298
74	Type I interferon signaling is required for activation of the inflammasome during Francisella infection. Journal of Experimental Medicine, 2007, 204, 987-994.	8.5	291
75	Activation of the inflammasome upon Francisella tularensis infection: interplay of innate immune pathways and virulence factors. Cellular Microbiology, 2007, 9, 2543-2551.	2.1	81
76	<i>Francisella Tularensis: Activation of the Inflammasome</i> Sciences, 2007, 1105, 219-237.	3.8	46
77	Molecular motors hijacking by intracellular pathogens. Cellular Microbiology, 2006, 8, 23-32.	2.1	62
78	The Salmonella effector protein PipB2 is a linker for kinesin-1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13497-13502.	7.1	153
79	The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. Infection and Immunity, 2006, 74, 6965-6972.	2.2	98
80	Identification of Salmonella functions critical for bacterial cell division within eukaryotic cells. Molecular Microbiology, 2005, 56, 252-267.	2.5	43
81	The Intracellular Fate of Salmonella Depends on the Recruitment of Kinesin. Science, 2005, 308, 1174-1178.	12.6	214
82	Improved methods for producing outer membrane vesicles in Gram-negative bacteria. Research in Microbiology, 2004, 155, 437-446.	2.1	62
83	Induction of protective antiviral cytotoxic T cells by a tubular structure capable of carrying large foreign sequences. Vaccine, 2002, 20, 1369-1377.	3.8	17
84	Delivery of Multiple Epitopes by Recombinant Detoxified Adenylate Cyclase of Bordetella pertussis Induces Protective Antiviral Immunity. Journal of Virology, 2001, 75, 7330-7338.	3.4	61
85	Intracytosolic Sensing of Pathogens: Nucleic Acid Receptors, NLRs, and the Associated Responses during Infections and Autoinflammatory Diseases., 0,, 153-169.		0