
David TurrÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2724032/publications.pdf Version: 2024-02-01

Δημη ΤμορÃ:

#	Article	IF	CITATIONS
1	Benzodifuran-based fluorescent brighteners: A novel platform for plant cell wall imaging. Dyes and Pigments, 2022, 199, 110071.	3.7	3
2	Combination of the Systemin peptide with the beneficial fungus <i>Trichoderma afroharzianum</i> T22 improves plant defense responses against pests and diseases. Journal of Plant Interactions, 2022, 17, 569-579.	2.1	6
3	Competitiveness during Dual-Species Biofilm Formation of Fusarium oxysporum and Candida albicans and a Novel Treatment Strategy. Pharmaceutics, 2022, 14, 1167.	4.5	13
4	Conserved secreted effectors contribute to endophytic growth and multihost plant compatibility in a vascular wilt fungus. Plant Cell, 2022, 34, 3214-3232.	6.6	20
5	A diversity of resistance sources to Fusarium oxysporum f. sp. pisi found within grass pea germplasm. Plant and Soil, 2021, 463, 19-38.	3.7	12
6	Selection of Endophytic Beauveria bassiana as a Dual Biocontrol Agent of Tomato Pathogens and Pests. Pathogens, 2021, 10, 1242.	2.8	28
7	Chemotropic Assay for Testing Fungal Response to Strigolactones and Strigolactone-Like Compounds. Methods in Molecular Biology, 2021, 2309, 105-111.	0.9	1
8	A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nature Communications, 2020, 11, 5264.	12.8	41
9	Chemotropism Assays for Plant Symbiosis and Mycoparasitism Related Compound Screening in Trichoderma atroviride. Frontiers in Microbiology, 2020, 11, 601251.	3.5	27
10	Heterologous Expression of PKPI and Pin1 Proteinase Inhibitors Enhances Plant Fitness and Broad-Spectrum Resistance to Biotic Threats. Frontiers in Plant Science, 2020, 11, 461.	3.6	7
11	Structure of Fungal α Mating Pheromone in Membrane Mimetics Suggests a Possible Role for Regulation at the Water-Membrane Interface. Frontiers in Microbiology, 2020, 11, 1090.	3.5	5
12	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	4.4	55
13	Expansion Microscopy for Cell Biology Analysis in Fungi. Frontiers in Microbiology, 2020, 11, 574.	3.5	37
14	NADPH oxidase regulates chemotropic growth of the fungal pathogen <i>Fusarium oxysporum</i> towards the host plant. New Phytologist, 2019, 224, 1600-1612.	7.3	48
15	The Role of Volatile Organic Compounds and Rhizosphere Competence in Mode of Action of the Non-pathogenic Fusarium oxysporum FO12 Toward Verticillium Wilt. Frontiers in Microbiology, 2019, 10, 1808.	3.5	27
16	Autocrine pheromone signalling regulates community behaviour in the fungal pathogen Fusarium oxysporum. Nature Microbiology, 2019, 4, 1443-1449.	13.3	54
17	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	2.6	147
18	Three <i>Fusarium oxysporum</i> mitogenâ€activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and crossâ€kingdom pathogenicity. Molecular Plant Pathology, 2017, 18, 912-924.	4.2	77

David TurrÃi

#	Article	IF	CITATIONS
19	Structure-Activity Relationship of α Mating Pheromone from the Fungal Pathogen Fusarium oxysporum. Journal of Biological Chemistry, 2017, 292, 3591-3602.	3.4	13
20	A conserved coâ€chaperone is required for virulence in fungal plant pathogens. New Phytologist, 2016, 209, 1135-1148.	7.3	31
21	A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nature Microbiology, 2016, 1, 16043.	13.3	249
22	Hyphal chemotropism in fungal pathogenicity. Seminars in Cell and Developmental Biology, 2016, 57, 69-75.	5.0	25
23	Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Research, 2015, 43, gkv711.	14.5	605
24	Multiple Roles and Effects of a Novel <i>Trichoderma</i> Hydrophobin. Molecular Plant-Microbe Interactions, 2015, 28, 167-179.	2.6	100
25	Chemotropic sensing in fungus–plant interactions. Current Opinion in Plant Biology, 2015, 26, 135-140.	7.1	46
26	Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature, 2015, 527, 521-524.	27.8	164
27	The Secreted Peptide PIP1 Amplifies Immunity through Receptor-Like Kinase 7. PLoS Pathogens, 2014, 10, e1004331.	4.7	186
28	Protein Kinases in Plant-Pathogenic Fungi: Conserved Regulators of Infection. Annual Review of Phytopathology, 2014, 52, 267-288.	7.8	199
29	Iron competition in fungus-plant interactions. Plant Signaling and Behavior, 2013, 8, e23012.	2.4	9
30	HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen <i>Fusarium oxysporum</i> Â Â Â. Plant Cell, 2012, 24, 3805-3822.	6.6	138
31	Potato Type I and II Proteinase Inhibitors: Modulating Plant Physiology and Host Resistance. Current Protein and Peptide Science, 2011, 12, 374-385.	1.4	35
32	Genotype-dependent expression of specific members of potato protease inhibitor gene families in different tissues and in response to wounding and nematode infection. Journal of Plant Physiology, 2009, 166, 762-774.	3.5	35
33	Identification of a New Biocontrol Gene in <i>Trichoderma atroviride</i> : The Role of an ABC Transporter Membrane Pump in the Interaction with Different Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2009, 22, 291-301.	2.6	139
34	Identification and characterization of potato protease inhibitors able to inhibit pathogenicity and growth of Botrytis cinerea. Physiological and Molecular Plant Pathology, 2006, 68, 138-148.	2.5	37
35	Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 2006, 50, 307-321.	1.7	247
36	A novel understanding of the three-way interaction between Trichoderma spp., the colonized plant and fungal pathogens. , 0, , 291-309.		1