Amin Ardestani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2723195/publications.pdf

Version: 2024-02-01

471509 361022 1,614 36 17 35 citations h-index g-index papers 36 36 36 2333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	How \hat{I}^2 cells can smell insulin fragments. Cell Metabolism, 2022, 34, 189-191.	16.2	1
2	MST1 deletion protects β-cells in a mouse model of diabetes. Nutrition and Diabetes, 2022, 12, 7.	3.2	2
3	PHLPP1 deletion restores pancreatic \hat{l}^2 -cell survival and normoglycemia in the db/db mouse model of obesity-associated diabetes. Cell Death Discovery, 2022, 8, 57.	4.7	3
4	Case Report: Neratinib Therapy Improves Glycemic Control in a Patient With Type 2 Diabetes and Breast Cancer. Frontiers in Endocrinology, 2022, 13, 830097.	3. 5	4
5	Hippo STK kinases drive metabolic derangement. Nature Metabolism, 2021, 3, 295-296.	11.9	0
6	Targeting glucose metabolism for treatment of COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 112.	17.1	42
7	SARS-CoV-2 and pancreas: a potential pathological interaction?. Trends in Endocrinology and Metabolism, 2021, 32, 842-845.	7.1	23
8	Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Reports, 2021, 36, 109490.	6.4	15
9	The Hippo kinase LATS2 impairs pancreatic \hat{l}^2 -cell survival in diabetes through the mTORC1-autophagy axis. Nature Communications, 2021, 12, 4928.	12.8	12
10	Deathly triangle for pancreatic \hat{l}^2 -cells: Hippo pathway-MTORC1-autophagy. Autophagy, 2021, , 1-3.	9.1	1
11	LDHA is enriched in human isletÂalpha cells and upregulated in type 2 diabetes. Biochemical and Biophysical Research Communications, 2021, 568, 158-166.	2.1	10
12	Loss of TAZ Boosts PPARÎ ³ to Cope with Insulin Resistance. Cell Metabolism, 2020, 31, 6-8.	16.2	11
13	STRIPAK Is a Regulatory Hub Initiating Hippo Signaling. Trends in Biochemical Sciences, 2020, 45, 280-283.	7.5	4
14	Neratinib protects pancreatic beta cells in diabetes. Nature Communications, 2019, 10, 5015.	12.8	44
15	Neratinib is an MST1 inhibitor and restores pancreatic \hat{l}^2 -cells in diabetes. Cell Death Discovery, 2019, 5, 149.	4.7	10
16	mTORC2 Signaling: A Path for Pancreatic \hat{l}^2 Cell's Growth and Function. Journal of Molecular Biology, 2018, 430, 904-918.	4.2	31
17	The Hippo Signaling Pathway in Pancreatic \hat{l}^2 -Cells: Functions and Regulations. Endocrine Reviews, 2018, 39, 21-35.	20.1	39
18	mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metabolism, 2018, 27, 314-331.	16.2	129

#	Article	IF	CITATIONS
19	Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 492-509.	7.1	111
20	Loss of Deubiquitinase USP1 Blocks Pancreatic \hat{l}^2 -Cell Apoptosis by Inhibiting DNA Damage Response. IScience, 2018, 1, 72-86.	4.1	10
21	mTORC1 and IRS1: Another Deadly Kiss. Trends in Endocrinology and Metabolism, 2018, 29, 737-739.	7.1	11
22	An SCFFBXO28 E3 Ligase Protects Pancreatic \hat{l}^2 -Cells from Apoptosis. International Journal of Molecular Sciences, 2018, 19, 975.	4.1	8
23	Pancreatic \hat{l}^2 -cell rescue in diabetes by targeting Merlin. Expert Review of Endocrinology and Metabolism, 2017, 12, 97-99.	2.4	4
24	mTORC in \hat{I}^2 cells: more Than Only Recognizing Comestibles. Journal of Cell Biology, 2017, 216, 1883-1885.	5 . 2	10
25	Reciprocal regulation of mTOR complexes in pancreatic islets from humans with type 2 diabetes. Diabetologia, 2017, 60, 668-678.	6.3	84
26	MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia, 2016, 59, 1843-1849.	6.3	45
27	Proproliferative and antiapoptotic action of exogenously introduced YAP in pancreatic \hat{l}^2 cells. JCI Insight, 2016, 1, e86326.	5.0	24
28	MST1 is a key regulator of beta cell apoptosis and dysfunction in diabetes. Nature Medicine, 2014, 20, 385-397.	30.7	170
29	Neutralizing Interleukin- $1\hat{l}^2$ (IL- $1\hat{l}^2$) Induces \hat{l}^2 -Cell Survival by Maintaining PDX1 Protein Nuclear Localization. Journal of Biological Chemistry, 2011, 286, 17144-17155.	3.4	27
30	Suppressive effect of ethyl acetate extract of Teucrium polium on cellular oxidative damages and apoptosis induced by 2-deoxy-d-ribose: Role of de novo synthesis of glutathione. Food Chemistry, 2009, 114, 1222-1230.	8.2	22
31	Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chemistry, 2009, 115, 37-42.	8.2	57
32	Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chemico-Biological Interactions, 2008, 172, 176-184.	4.0	140
33	2-Deoxy-d-ribose-induced oxidative stress causes apoptosis in human monocytic cells: Prevention by pyridoxal-5′-phosphate. Toxicology in Vitro, 2008, 22, 968-979.	2.4	18
34	Inhibitory effects of ethyl acetate extract of Teucrium polium on in vitro protein glycoxidation. Food and Chemical Toxicology, 2007, 45, 2402-2411.	3.6	95
35	Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation. International Journal of Biological Macromolecules, 2007, 41, 572-578.	7.5	95
36	Antioxidant and free radical scavenging potential of Achillea santolina extracts. Food Chemistry, 2007, 104, 21-29.	8.2	302

3