Yoshihiro Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722798/publications.pdf

Version: 2024-02-01

840776 839539 79 422 11 18 citations h-index g-index papers 79 79 79 107 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Read/Write Channel Modeling and Two-Dimensional Neural Network Equalization for Two-Dimensional Magnetic Recording. IEEE Transactions on Magnetics, 2011, 47, 3558-3561.	2.1	55
2	Performance Evaluation of Neuro-ITI Canceller Using a Modified Writing Process for TDMR. IEICE Transactions on Electronics, 2013, E96.C, 1504-1507.	0.6	26
3	Modeling of Writing Process for Two-Dimensional Magnetic Recording and Performance Evaluation of Two-Dimensional Neural Network Equalizer. IEEE Transactions on Magnetics, 2012, 48, 4586-4589.	2.1	24
4	A study of PRML systems for perpendicular recording using double layered medium. IEEE Transactions on Magnetics, 2000, 36, 2164-2166.	2.1	20
5	Simplified Neural Network Equalizer With Noise Whitening Function for GPRML System. IEEE Transactions on Magnetics, 2008, 44, 3777-3780.	2.1	19
6	Optimization of Bit Geometry and Multi-Reader Geometry for Two-Dimensional Magnetic Recording. IEEE Transactions on Magnetics, 2016, 52, 1-7.	2.1	19
7	Jitter-like noise cancellation using AR model of PR channel in perpendicular magnetic recording. IEEE Transactions on Magnetics, 2002, 38, 2349-2351.	2.1	16
8	A Study of TDMR Signal Processing Opportunities Based on Quasi-Micromagnetic Simulations. IEEE Transactions on Magnetics, 2015, 51, 1-7.	2.1	15
9	Suppression of ITI by array head reading and 2D-equalization. AIP Advances, 2017, 7, .	1.3	15
10	Effect of Reader Sensitivity Rotation in TDMR With Head Skew. IEEE Transactions on Magnetics, 2016, 52, 1-4.	2.1	12
11	A Study on Iterative Decoding With LLR Modulator Using Neural Network in SMR System. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	11
12	A Study on Iterative Decoding With LLR Modulator by Neural Network Using Adjacent Track Information in SMR System. IEEE Transactions on Magnetics, 2019, 55, 1-5.	2.1	11
13	Performance Evaluation of ITI Canceller Using Granular Medium Model. IEEE Transactions on Magnetics, 2011, 47, 3570-3573.	2.1	10
14	Influence of Writing ITI Effects in Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 3814-3817.	2.1	9
15	Nonbinary LDPC Coding and Iterative Decoding System With 2-D Equalizer for TDMR R/W Channel Using Discrete Voronoi Model. IEEE Transactions on Magnetics, 2013, 49, 662-667.	2.1	9
16	Performance Evaluation of TDMR R/W Channel With Head Skew by LDPC Coding and Iterative Decoding System. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	9
17	Iterative Decoding Using Attenuated Extrinsic Information from Sum-Product Decoder for PMR Channel With Patterned Medium. IEEE Transactions on Magnetics, 2007, 43, 2277-2279.	2.1	8
18	A Study of LDPC Coding and Iterative Decoding System in Magnetic Recording System Using Bit-Patterned Medium With Write Error. IEEE Transactions on Magnetics, 2009, 45, 3753-3756.	2.1	8

#	Article	IF	Citations
19	Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator. AIP Advances, 2018, 8, 056512.	1.3	8
20	A Study on Optimal BAR in Array Head Reading. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	7
21	Improvement of Iterative Decoding With LLR Modulator by Neural Network Using Magnetic Transition Information in SMR System. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	7
22	A New Burst Detection Scheme Using Parity Check Matrix of LDPC Code for Bit Flipping Burst-like Signal Degradation. IEEE Transactions on Magnetics, 2008, 44, 3773-3776.	2.1	6
23	A study on modeling of the writing process and two-dimensional neural network equalization for two-dimensional magnetic recording. Journal of Applied Physics, 2012, 111, 07B727.	2.5	6
24	Performance Evaluation of Neuro ITI Canceller for Two-Dimensional Magnetic Recording by Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 3810-3813.	2.1	6
25	Evaluation of Multiple Reader Location for TDMR R/W Channel. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	6
26	Utilization of multiple read heads for TMR prediction and correction in bit-patterned media recording. AIP Advances, 2017, 7, 056501.	1.3	6
27	A study of turbo decoding with embedded AR channel model for perpendicular recording. IEEE Transactions on Magnetics, 2003, 39, 2570-2572.	2.1	5
28	Turbo Equalization Effect for Nonbinary LDPC Code in BPM R/W Channel. IEEE Transactions on Magnetics, 2012, 48, 4602-4605.	2.1	5
29	A Study on Relationship Between Recording Pattern and Decoding Reliability in SMR. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	5
30	Bit error rate performance of iterative decoding in a perpendicular magnetic recording channel. IEEE Transactions on Magnetics, 2001, 37, 689-694.	2.1	4
31	SNR Improvement of Envelope Demodulation Using Two Temporal Magnetization Dynamics From Dual-Spin-Torque Oscillator. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	4
32	Performance Evaluation of LDPC Coding and Iterative Decoding System for 3-D Magnetic Recording With Dot Position Fluctuation. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	4
33	A Study on Neural Network Detector in SMR System. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	4
34	Performance Improvement of Dual STO Reading With AM–FM Combined Detection for 3-D Magnetic Recording. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	4
35	Burst detection by parity check matrix of LDPC code for perpendicular magnetic recording using bit-patterned medium. , 2008, , .		3
36	Nonbinary LDPC Coding System With Symbol-By-Symbol Turbo Equalizer for Shingled Magnetic Recording. IEEE Transactions on Magnetics, 2013, 49, 3791-3794.	2.1	3

3

#	Article	IF	CITATIONS
37	Influence of writing and reading intertrack interferences in terms of bit aspect ratio in shingled magnetic recording. Journal of Applied Physics, 2014, 115, 17B729.	2.5	3
38	Performance evaluation of LDPC coding and iterative decoding system in TDMR R/W channel with head skew. , 2015, , .		3
39	Signal processing technologies for high-density digital magnetic recording. Electronics and Communications in Japan, 1999, 82, 25-45.	0.2	2
40	Performance improvement of PRML system using AR channel model in perpendicular magnetic recording. Electronics and Communications in Japan, 2004, 87, 18-27.	0.2	2
41	Simplification of neural network equalizer for perpendicular magnetic recording. Electronics and Communications in Japan, 2006, 89, 19-27.	0.2	2
42	BER Performance of PRML System in Perpendicular Magnetic Recording Channel With Thermal Decay. IEEE Transactions on Magnetics, 2007, 43, 2262-2264.	2.1	2
43	A Study on Iterative Decoding With LLR Modulator by Parity Check Information in SMR System. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	2
44	A Study on AM–FM Combined Detection for Magnetic Recording Using STO Reading. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	2
45	A Study of Channel Time-Domain Response on Equalization for Reproducing a Double-Layer Magnetic Recording Medium. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	2
46	A Study of Samples Captured at Phases for Multi-Dimensional Magnetic Recording System with Double Recording Layers. , 2021, , .		2
47	A Study of Three-Dimensional Equalization for Reproducing a Double-Layer Magnetic Recording Medium. IEEE Transactions on Magnetics, 2022, 58, 1-4.	2.1	2
48	Performance comparison of partial response systems in digital VTR. Electronics and Communications in Japan, 1985, 68, 75-83.	0.1	1
49	A study on partial response system in digital magnetic recording. Electronics and Communications in Japan, 1993, 76, 51-58.	0.2	1
50	BER performance of PRML systems for perpendicular recording using single layered medium. IEEE Transactions on Magnetics, 2000, 36, 2157-2159.	2.1	1
51	A Study of Interactive Processing Between PRML Detection and Erasure Error Correction in Perpendicular Recording. IEEE Transactions on Magnetics, 2004, 40, 3105-3107.	2.1	1
52	CITI code based on PR1 equalized level for perpendicular recording. , 2005, , .		1
53	A study on relationship between recording pattern and decoding reliability in SMR. , 2017, , .		1
54	Performance Evaluation of Non-binary LDPC Coding and Iterative Decoding System for BPM R/W Channel with Write-Errors. IEICE Transactions on Electronics, 2013, E96.C, 1497-1503.	0.6	1

#	Article	IF	Citations
55	A Study on Neural Network Detector in Smr System. , 2020, , .		1
56	A Study on Iterative Decoding by Neural Network Detector in SMR System., 2021, , .		1
57	Performance improvement in digital magnetic recording by write and read equalization. Electronics and Communications in Japan, 1993, 76, 52-62.	0.2	0
58	A new <i>n/m</i> code and modified viterbi decoding in magnetooptical recording. Electronics and Communications in Japan, 1994, 77, 83-92.	0.2	0
59	Performance of partial response system in perpendicular magnetic recording. Electronics and Communications in Japan, 1994, 77, 73-81.	0.2	0
60	Systematic derivation of error probability of PRML systems in digital magnetic recording. Electronics and Communications in Japan, 1997, 80, 90-100.	0.2	0
61	Performance comparison of various PRML systems for (1,7)RLL code and 8/9 code. Electronics and Communications in Japan, 1997, 80, 39-47.	0.2	0
62	Punctured convolutional coded PR4ML system in digital magnetic recording. Electronics and Communications in Japan, 1998, 81, 62-70.	0.2	0
63	Construction and performance evaluation of a rate 8/10 MSN code for periodically time-varying trellis diagram. Electronics and Communications in Japan, 1999, 82, 31-40.	0.2	0
64	Performance comparisons of various PRML systems for rate 11/12 punctured convolutional code and 8/9 code. Electronics and Communications in Japan, 1999, 82, 54-62.	0.2	0
65	Performance comparison of various PRML systems in high-density recording. Electronics and Communications in Japan, 1999, 82, 1-9.	0.2	0
66	The rate 19/20 trellis code matched to enhanced extended class-4 partial response channel. IEEE Transactions on Magnetics, 2001, 37, 768-772.	2.1	0
67	Performance evaluation of PRML systems using rate 9/10 trellis codes. Electronics and Communications in Japan, 2001, 84, 58-65.	0.2	0
68	Serially concatenated coding for PR system with LDPC and PC codes. , 0, , .		0
69	Performance comparison of $(1,7)$ RLL coded PRML systems and $16/17$ $(0,6/6)$ coded PRML systems in perpendicular magnetic recording using double-layered media. Electronics and Communications in Japan, 2002, 85, 43-49.	0.2	0
70	A study of turbo coding and decoding using AR channel model. , 0, , .		0
71	Investigation of magnetic recording systems with higher-dimensional parity check codes. Electronics and Communications in Japan, 2006, 89, 41-52.	0.2	0
72	A study on application of partial response maximum likelihood channel to magnetic recording system using patterned media., 2006,,.		0

#	Article	IF	CITATIONS
73	Write-margin improvement of non-binary LDPC coding and iterative decoding system in BPM R/W channel with write-errors. , 2012, , .		O
74	A study on optimal BAR in array head reading. , 2017, , .		0
75	SNR Improvement of Envelope Demodulation Using Two Tem-poral Magnetization Dynamics from Dual Spin-Torque Oscillator , 2018, , .		O
76	A Study on Performance Evaluation With Neural Network Detector in SMR System. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	0
77	1-3 Multimedia Storage. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2006, 60, 1178-1185.	0.1	O
78	Performance Improvement System for Perpendicular Magnetic Recording with Thermal Asperity. IEICE Transactions on Electronics, 2011, E94-C, 1472-1478.	0.6	0
79	2. Error Correction Technique for Information Storage Media. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2016, 70, 739-742.	0.1	0