Jing-Ren Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2722028/publications.pdf Version: 2024-02-01

INC-REN ZHANC

#	Article	IF	CITATIONS
1	Highâ€throughput CRISPRi phenotyping identifies new essential genes in <i>Streptococcus pneumoniae</i> . Molecular Systems Biology, 2017, 13, 931.	7.2	226
2	Epigenetic Switch Driven by DNA Inversions Dictates Phase Variation in Streptococcus pneumoniae. PLoS Pathogens, 2016, 12, e1005762.	4.7	149
3	Structural Insights into SraP-Mediated Staphylococcus aureus Adhesion to Host Cells. PLoS Pathogens, 2014, 10, e1004169.	4.7	85
4	Structure of Pneumococcal Peptidoglycan Hydrolase LytB Reveals Insights into the Bacterial Cell Wall Remodeling and Pathogenesis. Journal of Biological Chemistry, 2014, 289, 23403-23416.	3.4	62
5	Structural Biochemistry of a Vibrio cholerae Dinucleotide Cyclase Reveals Cyclase Activity Regulation by Folates. Molecular Cell, 2014, 55, 931-937.	9.7	62
6	Molecular basis of host specificity in human pathogenic bacteria. Emerging Microbes and Infections, 2014, 3, 1-10.	6.5	61
7	Allelic Variation of the Capsule Promoter Diversifies Encapsulation and Virulence In Streptococcus pneumoniae. Scientific Reports, 2016, 6, 30176.	3.3	50
8	Catalytic Enantioselective Azaâ€pinacol Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 9217-9221.	13.8	46
9	qDNAmod: a statistical model-based tool to reveal intercellular heterogeneity of DNA modification from SMRT sequencing data. Nucleic Acids Research, 2014, 42, 13488-13499.	14.5	41
10	Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae. Journal of Bacteriology, 2017, 199, .	2.2	37
11	Phase Variation of <i>Streptococcus pneumoniae</i> . Microbiology Spectrum, 2019, 7, .	3.0	36
12	Outer membrane vesicle-associated lipase FtlA enhances cellular invasion and virulence in <i>Francisella tularensis</i> LVS. Emerging Microbes and Infections, 2017, 6, 1-12.	6.5	31
13	Sequence Elements Upstream of the Core Promoter Are Necessary for Full Transcription of the Capsule Gene Operon in Streptococcus pneumoniae Strain D39. Infection and Immunity, 2015, 83, 1957-1972.	2.2	27
14	Total synthesis and preliminary SAR study of (±)-merochlorins A and B. Organic and Biomolecular Chemistry, 2016, 14, 198-205.	2.8	26
15	Molecular Mechanisms of hsdS Inversions in the cod Locus of Streptococcus pneumoniae. Journal of Bacteriology, 2019, 201, .	2.2	26
16	HtrAâ€mediated selective degradation of DNA uptake apparatus accelerates termination of pneumococcal transformation. Molecular Microbiology, 2019, 112, 1308-1325.	2.5	22
17	Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerging Microbes and Infections, 2018, 7, 1-18.	6.5	21
18	Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Research, 2020, 48, 11468-11485.	14.5	20

JING-REN ZHANG

#	Article	IF	CITATIONS
19	Analysis of a flagellar filament cap mutant reveals that HtrA serine protease degrades unfolded flagellin protein in the periplasm of <i>Borrelia burgdorferi</i> . Molecular Microbiology, 2019, 111, 1652-1670.	2.5	18
20	Addiction of Hypertransformable Pneumococcal Isolates to Natural Transformation for <i>In Vivo</i> Fitness and Virulence. Infection and Immunity, 2016, 84, 1887-1901.	2.2	17
21	Regulation of pneumococcal epigenetic and colony phases by multiple two-component regulatory systems. PLoS Pathogens, 2020, 16, e1008417.	4.7	17
22	Novel Immunoprotective Proteins of Streptococcus pneumoniae Identified by Opsonophagocytosis Killing Screen. Infection and Immunity, 2018, 86, .	2.2	16
23	Structural determinants of host specificity of complement Factor H recruitment by <i>Streptococcus pneumoniae</i> . Biochemical Journal, 2015, 465, 325-335.	3.7	15
24	The Protease Locus of Francisella tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host. Infection and Immunity, 2016, 84, 1387-1402.	2.2	15
25	Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. Journal of Experimental Medicine, 2022, 219, .	8.5	13
26	Structural and Enzymatic Characterization of the Choline Kinase LicA from Streptococcus pneumoniae. PLoS ONE, 2015, 10, e0120467.	2.5	11
27	A pleiotropic role of FlaG in regulating the cell morphogenesis and flagellar homeostasis at the cell poles of Treponema denticola. Cellular Microbiology, 2019, 21, e12886.	2.1	9
28	Leptin receptor signaling sustains metabolic fitness of alveolar macrophages to attenuate pulmonary inflammation. Science Advances, 2022, 8, .	10.3	7
29	A Natural Lipotrisaccharide and Its Derivatives Selectively Lyse Streptococcus pneumoniae via Interaction with Cell Membrane. ACS Infectious Diseases, 2017, 3, 438-453.	3.8	4
30	In vitro DNA Inversions Mediated by the PsrA Site-Specific Tyrosine Recombinase of Streptococcus pneumoniae. Frontiers in Molecular Biosciences, 2020, 7, 43.	3.5	4
31	A C-terminal truncated mutation of licC attenuates the virulence of Streptococcus pneumoniae. Research in Microbiology, 2014, 165, 630-638.	2.1	3
32	Observation of Pneumococcal Phase Variation in Colony Morphology. Bio-protocol, 2017, 7, e2434.	0.4	3
33	MetR is a molecular adaptor for pneumococcal carriage in the healthy upper airway. Molecular Microbiology, 2021, 116, 438-458.	2.5	2
34	A Novel Aquaporin Subfamily Imports Oxygen and Contributes to Pneumococcal Virulence by Controlling the Production and Release of Virulence Factors. MBio, 2021, 12, e0130921.	4.1	2
35	Structural Comparison and Simulation of Pneumococcal Peptidoglycan Hydrolase LytB. Methods in Molecular Biology, 2016, 1440, 271-283.	0.9	0