Alban de Kerchove d'Exaerde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2721605/publications.pdf

Version: 2024-02-01

56 papers

3,855 citations

28 h-index 52 g-index

62 all docs

62 docs citations

62 times ranked

4638 citing authors

#	Article	IF	Citations
1	Molecular and Physiological Diversity of Nicotinic Acetylcholine Receptors in the Midbrain Dopaminergic Nuclei. Journal of Neuroscience, 2001, 21, 1452-1463.	3.6	626
2	Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature, 1999, 398, 805-810.	27.8	514
3	D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nature Neuroscience, 2009, 12, 393-395.	14.8	251
4	Modulation of Ciliary Phosphoinositide Content Regulates Trafficking and Sonic Hedgehog Signaling Output. Developmental Cell, 2015, 34, 338-350.	7.0	233
5	Targeting Transcription to the Neuromuscular Synapse. Neuron, 2001, 31, 15-22.	8.1	184
6	Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO Journal, 2012, 31, 640-653.	7.8	180
7	Slow-wave sleep is controlled by a subset of nucleus accumbens core neurons in mice. Nature Communications, 2017, 8, 734.	12.8	157
8	Aminopyridines Correct Early Dysfunction and Delay Neurodegeneration in a Mouse Model of Spinocerebellar Ataxia Type 1. Journal of Neuroscience, 2011, 31, 11795-11807.	3.6	137
9	The complete inventory of the yeastSaccharomyces cerevisiaeP-type transport ATPases. FEBS Letters, 1997, 409, 325-332.	2.8	113
10	Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse nucleus accumbens. Frontiers in Neural Circuits, 2013, 7, 22.	2.8	105
11	Ventrolateral Striatal Medium Spiny Neurons Positively Regulate Food-Incentive, Goal-Directed Behavior Independently of D1 and D2 Selectivity. Journal of Neuroscience, 2017, 37, 2723-2733.	3.6	99
12	Spatial distribution of D1R- and D2R-expressing medium-sized spiny neurons differs along the rostro-caudal axis of the mouse dorsal striatum. Frontiers in Neural Circuits, 2013, 7, 124.	2.8	96
13	Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. ELife, 2017, 6, .	6.0	86
14	Kit-negative fibroblast-like cells expressing SK3, a Ca 2+ -activated K + channel, in the gut musculature in health and disease. Cell and Tissue Research, 2002, 310, 349-358.	2.9	79
15	Engineered Wnt ligands enable blood-brain barrier repair in neurological disorders. Science, 2022, 375, eabm4459.	12.6	67
16	Targeting Neuronal Populations of the Striatum. Frontiers in Neuroanatomy, 2011, 5, 40.	1.7	59
17	Targeted calretinin expression in granule cells of calretininnull mice restores normal cerebellar functions. FASEB Journal, 2006, 20, 380-382.	0.5	51
18	The prolactin-releasing peptide antagonizes the opioid system through its receptor GPR10. Nature Neuroscience, 2005, 8, 1735-1741.	14.8	48

#	Article	IF	Citations
19	FACS Array Profiling Identifies Ecto-5' Nucleotidase as a Striatopallidal Neuron-Specific Gene Involved in Striatal-Dependent Learning. Journal of Neuroscience, 2013, 33, 8794-8809.	3.6	43
20	Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation. Frontiers in Neuroanatomy, 2013, 7, 43.	1.7	42
21	Inhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABABreceptors. European Journal of Neuroscience, 2006, 24, 419-432.	2.6	41
22	Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Research, 2004, 32, e56-e56.	14.5	38
23	Expression of mutant Ets protein at the neuromuscular synapse causes alterations in morphology and gene expression. EMBO Reports, 2002, 3, 1075-1081.	4.5	37
24	Rabbit sarcoplasmic reticulum Ca2+-ATPase replaces yeast PMC1 and PMR1 Ca2+-ATPases for cell viability and calcineurin-dependent regulation of calcium tolerance. Molecular Microbiology, 1999, 31, 545-556.	2.5	36
25	Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. American Journal of Physiology - Renal Physiology, 2006, 290, G1219-G1227.	3.4	35
26	Inhibition of both $\hat{l}\pm7^*$ and \hat{l}^22^* nicotinic acetylcholine receptors is necessary to prevent development of sensitization to cocaine-elicited increases in extracellular dopamine levels in the ventral striatum. Psychopharmacology, 2006, 187, 181-188.	3.1	34
27	GPR88 in A _{2A} R Neurons Enhances Anxiety-Like Behaviors. ENeuro, 2016, 3, ENEURO.0202-16.2016.	1.9	32
28	Modulation of plant plasma membrane H+-ATPase by phytotoxic lipodepsipeptides produced by the plant pathogen Pseudomonas fuscovaginae. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1372, 216-226.	2.6	31
29	Interstitial cells of Cajal in the striated musculature of the mouse esophagus. Cell and Tissue Research, 2001, 306, 1-14.	2.9	30
30	Unraveling the Differential Functions and Regulation of Striatal Neuron Sub-Populations in Motor Control, Reward, and Motivational Processes. Frontiers in Behavioral Neuroscience, 2011, 5, 47.	2.0	29
31	Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors. Journal of Neuroscience, 2016, 36, 4976-4992.	3.6	29
32	Dopamine–endocannabinoid interactions mediate spike-timing-dependent potentiation in the striatum. Nature Communications, 2018, 9, 4118.	12.8	29
33	Distinct Roles of Ventromedial versus Ventrolateral Striatal Medium Spiny Neurons in Reward-Oriented Behavior. Current Biology, 2017, 27, 3042-3048.e4.	3.9	28
34	The Ets transcription factor Fev is specifically expressed in the human central serotonergic neurons. Neuroscience Letters, 2004, 357, 215-218.	2.1	27
35	Review: Subcellular traffic of the plasma membrane H+-ATPase in Saccharomyces cerevisiae. Yeast, 1996, 12, 907-916.	1.7	24
36	Adenosine A2A receptors in the olfactory bulb suppress rapid eye movement sleep in rodents. Brain Structure and Function, 2017, 222, 1351-1366.	2.3	23

#	Article	IF	CITATIONS
37	Drug addiction: from bench to bedside. Translational Psychiatry, 2021, 11, 424.	4.8	22
38	GPRIN3 Controls Neuronal Excitability, Morphology, and Striatal-Dependent Behaviors in the Indirect Pathway of the Striatum. Journal of Neuroscience, 2019, 39, 7513-7528.	3.6	18
39	Activation of adenosine A2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology, 2020, 168, 107923.	4.1	18
40	GPR88 in D1R-Type and D2R-Type Medium Spiny Neurons Differentially Regulates Affective and Motor Behavior. ENeuro, 2019, 6, ENEURO.0035-19.2019.	1.9	18
41	Expression of Adenosine A2A Receptors in the Rat Lumbar Spinal Cord and Implications in the Modulation of N-Methyl-d-Aspartate Receptor Currents. Anesthesia and Analgesia, 2008, 106, 1882-1889.	2.2	17
42	Deletion of <i>Maged1</i> in mice abolishes locomotor and reinforcing effects of cocaine. EMBO Reports, 2018, 19, .	4.5	16
43	Thalamo-Nucleus Accumbens Projections in Motivated Behaviors and Addiction. Frontiers in Systems Neuroscience, 2021, 15, 711350.	2.5	12
44	Disruption and basic phenotypic analysis of 18 novel genes from the yeastSaccharomyces cerevisiae. Yeast, 1999, 15, 165-171.	1.7	10
45	It takes two to tango: Dorsal direct and indirect pathways orchestration of motor learning and behavioral flexibility. Neurochemistry International, 2019, 124, 200-214.	3.8	9
46	Mammalian Target of Rapamycin-RhoA Signaling Impairments in Direct Striatal Projection Neurons Induce Altered Behaviors and Striatal Physiology in Mice. Biological Psychiatry, 2020, 88, 945-954.	1.3	8
47	The GABAergic Gudden's dorsal tegmental nucleus: A new relay for serotonergic regulation of sleep-wake behavior in the mouse. Neuropharmacology, 2018, 138, 315-330.	4.1	7
48	Bidirectional Control of Reversal in a Dual Action Task by Direct and Indirect Pathway Activation in the Dorsolateral Striatum in Mice. Frontiers in Behavioral Neuroscience, 2017, 11, 256.	2.0	6
49	Downregulation of two novel genes in SI/SId and WLacZ/Wv mouse jejunum. Biochemical and Biophysical Research Communications, 2006, 346, 491-500.	2.1	5
50	The Effect of Serotonin Receptor 5-HT1B on Lateral Inhibition between Spiny Projection Neurons in the Mouse Striatum. Journal of Neuroscience, 2021, 41, 7831-7847.	3.6	3
51	Dorsal and ventral striatal neuronal subpopulations differentially disrupt male mouse copulatory behavior. European Neuropsychopharmacology, 2021, 49, 23-37.	0.7	3
52	Regulation of GluA1 phosphorylation by d â€amphetamine and methylphenidate in the cerebellum. Addiction Biology, 2021, 26, e12995.	2.6	2
53	Requirement of Maged 1 in glutamatergic cells for locomotor and reinforcing effects of cocaine. Frontiers in Neuroscience, $0,13,.$	2.8	0
54	Deciphering the roles of Nucleus Accumbens direct and indirect pathways in social exploration using in vivo calcium imaging. Frontiers in Neuroscience, $0,13,13$	2.8	0

#	Article	lF	CITATIONS
55	Specific gene deletion in the efferent striatal pathways confer electrophysiological, neuronal morphological and behavioral characteristics of ASD in mice. Frontiers in Neuroscience, 0, 13 , .	2.8	O
56	Asymetric dynamics in the striatal indirect pathway under arousing psychotimulant drug action. Frontiers in Neuroscience, 0, 13, .	2.8	0