Yoshiki Nakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2720850/publications.pdf

Version: 2024-02-01

177 papers

2,625 citations

28 h-index 223800 46 g-index

178 all docs

178 docs citations

178 times ranked

1882 citing authors

#	Article	IF	CITATIONS
1	Growth mechanism of ZnO nanorods from nanoparticles formed in a laser ablation plume. Applied Physics A: Materials Science and Processing, 2004, 78, 299-301.	2.3	146
2	Nano-Sized Hollow Bump Array Generated by Single Femtosecond Laser Pulse. Japanese Journal of Applied Physics, 2003, 42, L1452-L1454.	1.5	133
3	Synthesis of ZnO Nanorods by Nanoparticle Assisted Pulsed-Laser Deposition. Japanese Journal of Applied Physics, 2003, 42, L33-L35.	1.5	117
4	Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Applied Physics Letters, 2002, 81, 4239-4241.	3.3	95
5	ZnO nano-rods synthesized by nano-particle-assisted pulsed-laser deposition. Applied Physics A: Materials Science and Processing, 2004, 79, 1417-1419.	2.3	93
6	Effect of pulse width and fluence of femtosecond laser on the size of nanobump array. Applied Surface Science, 2007, 253, 6555-6557.	6.1	93
7	Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states. Nature Communications, 2018, 9, 3937.	12.8	75
8	Transport of YO molecules produced by ArF laser ablation of YBa2Cu3O7â^Îîn ambient oxygen gas. Journal of Applied Physics, 1993, 74, 7510-7516.	2.5	72
9	Time-resolved microscopic imaging of the laser-induced forward transfer process. Applied Physics A: Materials Science and Processing, 1999, 69, S275-S278.	2.3	61
10	Large improvement in quantum fluorescence yield of Er3+-doped fluorozirconate and fluoroindate glasses by Ce3+ codoping. Journal of Applied Physics, 2000, 88, 2187-2190.	2.5	61
11	Particle dynamics during nanoparticle synthesis by laser ablation in a background gas. Journal of Applied Physics, 2002, 91, 1640-1643.	2.5	61
12	Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation. Applied Surface Science, 2013, 274, 27-32.	6.1	60
13	Twoâ€dimensional laserâ€induced fluorescence imaging of a pulsedâ€laser deposition process of YBa2Cu3O7â^x. Journal of Applied Physics, 1996, 80, 2458-2466.	2.5	59
14	Fast ignition integrated experiments with Gekko and LFEX lasers. Plasma Physics and Controlled Fusion, 2011, 53, 124029.	2.1	55
15	Fast ignition realization experiment with high-contrast kilo-joule peta-watt LFEX laser and strong external magnetic field. Physics of Plasmas, 2016, 23, .	1.9	54
16	Lithographical laser ablation using femtosecond laser. Applied Physics A: Materials Science and Processing, 2004, 79, 1481-1483.	2.3	49
17	Deposition of ZnO film by pulsed laser deposition at room temperature. Applied Surface Science, 2002, 197-198, 368-370.	6.1	43
18	Liquidly process in femtosecond laser processing. Applied Surface Science, 2009, 255, 9761-9763.	6.1	43

#	Article	IF	CITATIONS
19	Synthesis of ZnO Nanorods by Laser Ablation of ZnO and Zn Targets in He and O2Background Gas. Japanese Journal of Applied Physics, 2005, 44, 688-691.	1.5	42
20	Degradation of femtosecond petawatt laser beams: Spatio-temporal/spectral coupling induced by wavefront errors of compression gratings. Applied Physics Express, 2017, 10, 102702.	2.4	41
21	High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics. Plasma Physics and Controlled Fusion, 2012, 54, 124042.	2.1	40
22	Observation of Nano-Particle Formation Process in a Laser-Ablated Plume Using Imaging Spectroscopy. Japanese Journal of Applied Physics, 1997, 36, L563-L565.	1.5	38
23	Fabrications of cerium-substituted YIG thin films for magnetic field sensor by pulsed-laser deposition. IEEE Transactions on Magnetics, 2001, 37, 2451-2453.	2.1	34
24	Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating. Applied Physics A: Materials Science and Processing, 2003, 77, 399-401.	2.3	34
25	Spectroscopic imaging of nanoparticles in laser ablation plume by redecomposition and laser-induced fluorescence detection. Applied Physics Letters, 2000, 77, 2334-2336.	3.3	32
26	Mesoscopic nanomaterials generated by interfering femtosecond laser processing. Applied Physics A: Materials Science and Processing, 2010, 101, 471-474.	2.3	32
27	Twoâ€dimensional laserâ€induced fluorescence imaging of nonâ€emissive species in pulsedâ€laser deposition process of YBa2Cu3O7â°x. Applied Physics Letters, 1995, 66, 3206-3208.	3.3	31
28	Ultrahigh-contrast kilojoule-class petawatt LFEX laser using a plasma mirror. Applied Optics, 2016, 55, 6850.	2.1	30
29	Influences of preparation conditions on laser-ablated Si nano-particle formation processes observed by imaging laser spectroscopy. Applied Surface Science, 1998, 127-129, 373-377.	6.1	27
30	Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse. Physical Review Letters, 2020, 124, 035001.	7.8	26
31	Nano-wire pig-tailed ZnO nano-rods synthesized by laser ablation. Thin Solid Films, 2006, 506-507, 274-277.	1.8	25
32	Plumeâ€substrate interaction in pulsedâ€laser deposition of highâ€temperature superconducting thin films. Applied Physics Letters, 1994, 64, 2599-2601.	3.3	24
33	Influence of electric field on the behavior of Si nanoparticles generated by laser ablation. Applied Physics Letters, 1999, 75, 751-753.	3.3	23
34	Heating efficiency evaluation with mimicking plasma conditions of integrated fast-ignition experiment. Physical Review E, 2015, 91, 063102.	2.1	23
35	High-Intensity Neutron Generation via Laser-Driven Photonuclear Reaction. Plasma and Fusion Research, 2015, 10, 2404003-2404003.	0.7	23
36	Effect of Ambient Oxygen Gas on the Transport of Particles Produced by Laser Ablated YBa2Cu3O7-x. Japanese Journal of Applied Physics, 1993, 32, L271-L273.	1.5	22

3

#	Article	IF	Citations
37	Second-Harmonic Generation in Pulsed-Laser-Deposited \$f BaTiO_{3}\$ Thin Films. Japanese Journal of Applied Physics, 1995, 34, L1536-L1539.	1.5	22
38	Fabrication of a Ti:sapphire planar waveguide by pulsed laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S719-S722.	2.3	22
39	Integrated experiments of fast ignition targets by Gekko-XII and LFEX lasers. High Energy Density Physics, 2012, 8, 227-230.	1.5	22
40	1.55 - \hat{l} 4m Ce,Er:ZBLAN fiber laser operation under 980-nm pumping: experiment and simulation. IEEE Photonics Technology Letters, 2002, 14, 609-611.	2.5	21
41	Designing of interference pattern in ultra-short pulse laser processing. Applied Physics A: Materials Science and Processing, 2013, 112, 191-196.	2.3	21
42	Novel Er and Ce codoped fluoride fiber amplifier for low-noise and high-efficient operation with 980-nm pumping. IEEE Photonics Technology Letters, 2003, 15, 525-527.	2.5	20
43	Design of interference using coherent beams configured as a six-sided pyramid. Applied Optics, 2012, 51, 5004.	1.8	20
44	Nanodot array deposition via single shot laser interference pattern using laser-induced forward transfer. International Journal of Extreme Manufacturing, 2020, 2, 025101.	12.7	20
45	Pulsed-laser deposition of barium titanate films and plume dynamics. Applied Surface Science, 1998, 127-129, 650-654.	6.1	18
46	Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties. Applied Physics A: Materials Science and Processing, 2004, 79, 1279-1282.	2.3	18
47	Improvement of Fluorescence Characteristics of Er3+-Doped Fluoride Glass by Ce3+ Codoping. Japanese Journal of Applied Physics, 1999, 38, L1409-L1411.	1.5	17
48	Development of 91 cm size gratings and mirrors for LEFX laser system. Journal of Physics: Conference Series, 2008, 112, 032002.	0.4	17
49	Interference laser processing. Advanced Optical Technologies, 2016, 5, 29-38.	1.7	17
50	Fabricating a regular hexagonal lattice structure by interference pattern of six femtosecond laser beams. Applied Surface Science, 2017, 417, 69-72.	6.1	17
51	Template free synthesis of free-standing silver nanowhisker and nanocrown superlattice by interfering femtosecond laser irradiation. Japanese Journal of Applied Physics, 2014, 53, 096701.	1.5	16
52	Influence of ambient gas on formation process of Si nanoparticles by laser ablation. Applied Physics A: Materials Science and Processing, 1999, 69, S239-S241.	2.3	15
53	Energy transfer mechanism in Yb3+:Er3+-ZBLAN: macro- and micro-parameters. Journal of Luminescence, 2004, 106, 187-194.	3.1	15
54	Effect of oxidation dynamics on the film characteristics of Ce:YIG thin films deposited by pulsed-laser deposition. Optics and Lasers in Engineering, 2006, 44, 147-154.	3.8	15

#	Article	IF	CITATIONS
55	Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating. Scientific Reports, 2019, 9, 4640.	3.3	15
56	Micromachining of a thin film by laser ablation using femtosecond laser with masks. Optics and Lasers in Engineering, 2004, 42, 389-393.	3.8	14
57	Parallel fabrication of spiral surface structures by interference pattern of circularly polarized beams. Scientific Reports, 2018, 8, 13448.	3.3	14
58	Laser-Induced Transfer of Noble Metal Nanodots with Femtosecond Laser-Interference Processing. Nanomaterials, 2021, 11, 305.	4.1	14
59	Effect of cumulative ablation on the ejection of particulates and molecular species from YBa2Cu3O7â^xtargets. Journal of Applied Physics, 1995, 77, 5961-5967.	2.5	13
60	Beam shaping by spatial light modulator and $4 < i > f < i> system to square and top-flat for interference laser processing. Proceedings of SPIE, 2017, , .$	0.8	13
61	Formation of Periodic Structure Inside Silica Glass and Acryl by Interfering Femtosecond Laser. Japanese Journal of Applied Physics, 2003, 42, L379-L380.	1.5	12
62	Ultraviolet lasing action in aligned ZnO nanowall. Applied Physics B: Lasers and Optics, 2015, 119, 469-473.	2.2	12
63	Transfer of Laser Dye by Laser-Induced Forward Transfer. Japanese Journal of Applied Physics, 2002, 41, L839-L841.	1.5	11
64	Spatial distribution of YO molecules ejected from laser-ablated YBa2 Cu3 O7?x. Applied Physics B: Lasers and Optics, 1994, 58, 289-294.	2.2	10
65	Present states and future prospect of fast ignition realization experiment (FIREX) with Gekko and LFEX Lasers at ILE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 653, 84-88.	1.6	10
66	X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser. Journal of Applied Physics, 2012, 112, 063301.	2.5	10
67	Time-of-Flight Distributions of Si Atoms Ejected by KrF Laser Ablation of Si\$_{f 3}\$N\$_{f 4}\$. Japanese Journal of Applied Physics, 1995, 34, 4079-4080.	1.5	9
68	Radical Beams Produced by Laser Ablation and Their Application. Japanese Journal of Applied Physics, 1994, 33, 4316-4319.	1.5	8
69	Effect of interference pattern on femtosecond laser-induced ripple structure. Applied Physics A: Materials Science and Processing, 2010, 98, 401-405.	2.3	8
70	Generation of superfine structure smaller than 10 nm by interfering femtosecond laser processing. Proceedings of SPIE, 2011, , .	0.8	8
71	Organized metamaterials comprised of gold nanoneedles in a lattice generated on silicon (100) wafer substrates by interfering femtosecond laser processing. Applied Physics A: Materials Science and Processing, 2013, 112, 173-177.	2.3	8
72	Controlling ZnO nanowire surface density during its growth by altering morphological properties of a ZnO buffer layer by UV laser irradiation. Applied Physics A: Materials Science and Processing, 2015, 118, 1239-1246.	2.3	8

#	Article	lF	Citations
73	Nano-structured surfaces on Ni–Ti generated by multiple shots of interfering femtosecond laser. Optics and Lasers in Engineering, 2009, 47, 847-849.	3.8	7
74	Sub-micron period metal lattices fabricated by interfering ultraviolet femtosecond laser processing. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	7
75	Observation of the behavior of a laser-ablated plume by laser imaging spectroscopic techniques. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1998, 124, 18-26.	0.4	6
76	Nano-Sized and Periodic Structures Generated by Interfering Femtosecond Laser. Journal of Laser Micro Nanoengineering, 2008, 3, 63-66.	0.1	6
77	Debris-Free High-Speed Laser-Assisted Low-Stress Dicing for Multi-Layered MEMS. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 63-68.	0.1	6
78	Oil-contamination problem in large-scale pulse-compressor. , 2010, , .		6
79	Interfering Ultraviolet Femtosecond Laser Processing of Gold Thin Film and Prospect of Shortest Period. Applied Physics Express, 2012, 5, 102703.	2.4	6
80	Ultraviolet laser light scattering diagnostics of the plume in pulsed-laser deposition process. Journal of Applied Physics, 1997, 82, 3543-3547.	2.5	5
81	Deposition of highly oriented Bi 12 SiO 20 thin films on Y-stabilized zirconia and SiO 2 by pulsed-laser deposition. Applied Physics A: Materials Science and Processing, 1999, 69, S723-S726.	2.3	5
82	Correction of the quenching effect in two-dimensional laser-induced fluorescence measurement of laser-ablation processes. Optics Letters, 1999, 24, 1765.	3.3	5
83	Synthesis of metal oxide nanoparticles by laser ablation: nanoparticle-assisted deposition of nanostructured ZnO., 2003,,.		5
84	Influences of oil-contamination on LIDT and optical properties in dielectric coatings., 2012,,.		5
85	Quantitative measurement of hard X-ray spectra from laser-driven fast ignition plasma. High Energy Density Physics, 2013, 9, 435-438.	1.5	5
86	Fabrication of ZnO crystals by UV-laser annealing on ZnO nanoparticles prepared by laser ablation method., 2015,,.		5
87	Local Melting of Gold Thin Films by Femtosecond Laser-Interference Processing to Generate Nanoparticles on a Source Target. Nanomaterials, 2018, 8, 477.	4.1	5
88	Laser spectroscopic investigation of particle behavior in a laser ablation process. Applied Surface Science, 1994, 79-80, 136-140.	6.1	4
89	<title>Fabrication of Ce:YIG film for electric and magnetic field sensor by pulsed-laser deposition and laser-induced forward transfer</title> ., 2000, 4088, 333.		4
90	Behavior of zinc oxide nanoparticles in pulsed-laser deposition. , 2003, 4830, 238.		4

#	Article	IF	Citations
91	Topdown femtosecond laser-interference technique for the generation of new nanostructures. Journal of Physics: Conference Series, 2007, 59, 245-248.	0.4	4
92	Frozen water drops in the nanoworld. SPIE Newsroom, 2009, , .	0.1	4
93	Debris-Free Laser-Assisted Low-Stress Dicing for Multi-Layered MEMS-Separation Method of Glass Layer IEEJ Transactions on Sensors and Micromachines, 2008, 128, 91-96.	0.1	4
94	Ti3+:sapphire Thin Films Fabricated by Pulsed-Laser Deposition. Japanese Journal of Applied Physics, 1998, 37, 2530-2531.	1.5	3
95	New developments of pulsed-laser deposition process. , 1998, 3274, 246.		3
96	Microscopic observation of laser-induced forward transfer process by two-dimensional laser-induced fluorescence technique., 2000, 3933, 457.		3
97	Fabrications of optically functional thin films for electric and magnetic field sensors by pulsed laser deposition. , 2000, , .		3
98	Broadband Light Source Based on Stimulated Raman Scattering in Silica Optical Fiber for Optical Coherence Tomography. Japanese Journal of Applied Physics, 2004, 43, 4195-4197.	1.5	3
99	Pulse compression using segmented grating in Gekko MII system, ILE. Journal of Physics: Conference Series, 2008, 112, 032017.	0.4	3
100	Growth of periodic ZnO nano-crystals on buffer layer patterned by interference laser irradiation. Proceedings of SPIE, 2013, , .	0.8	3
101	Change of interference pattern using fundamental and second-harmonic wavelengths by phase shift of a beam. Applied Physics A: Materials Science and Processing, 2014, 117, 207-210.	2.3	3
102	Improvement in the heating efficiency of fast ignition inertial confinement fusion through suppression of the preformed plasma. Nuclear Fusion, 2017, 57, 066022.	3.5	3
103	Numerical simulation of an adaptive beam-shaping technique using a phase grating overlapped via a spatial light modulator for precision squareâ€⁴flat-top beam. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	3
104	<title>Pulsed laser deposition of Ti:sapphire thin films using high-speed rotating target</title> ., 1999,		2
105	Holographic fabrication of micron structures using interfered femtoseond laser beams split by diffractive optics., 2003, 4977, 168.		2
106	<title>Generation of nanosized materials by processing of thin film by interfering femtosecond laser beams</title> ., 2004, , .		2
107	Generation of uniformly spaced and nanosized structures by interfering femtosecond laser beams. , 2004, , .		2
108	Generation of nanostructured surfaces by interfering and no-interfering ultra-short pulse laser processing. , 2009, , .		2

7

#	Article	IF	Citations
109	Generation of new nanostructures in designed matrix by interfering femtosecond laser processing. Proceedings of SPIE, 2012, , .	0.8	2
110	Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers. EPJ Web of Conferences, 2013, 59, 01008.	0.3	2
111	World's largest high energy petawatt laser LFEX as a user's facility. Proceedings of SPIE, 2015, , .	0.8	2
112	Fabrication of metallic hole array metamaterials with 760nm and 1930nm lattice constant by interfering femtosecond laser processing. Photonics and Nanostructures - Fundamentals and Applications, 2015, 17, 10-14.	2.0	2
113	Hot Electron and Ion Spectra in Axial and Transverse Laser Irradiation in the GXII-LFEX Direct Fast Ignition Experiment. Plasma and Fusion Research, 2021, 16, 2404076-2404076.	0.7	2
114	Debris-free Low-stress High-speed Laser-assisted Dicing for Multi-layered MEMS. IEEJ Transactions on Sensors and Micromachines, 2010, 130, 118-123.	0.1	2
115	Piezoelectric Sensing of Particles Produced by Pulsed-Laser Ablation of YBa2Cu3O7-δ. Japanese Journal of Applied Physics, 1993, 32, L1535-L1537.	1.5	1
116	Imaging of the behavior of atoms and emissive species in laser-induced forward transfer process. , 2000, , .		1
117	<title>Ejection of particles placed on a thin film by laser-induced forward transfer</title> ., 2001, 4274, 204.		1
118	Application and observation of laser-induced forward transfer process., 2002, 4637, 435.		1
119	Fabrication of Ce:YIG film with different composition by pulsed-laser deposition. , 2002, 4426, 256.		1
120	Deposition of LiNbO 3 waveguide by pulsed-laser deposition., 2003,,.		1
121	Generation of New Nanomaterials by Interfering Femtosecond Laser Processing. Materials Research Society Symposia Proceedings, 2004, 850, 1.	0.1	1
122	<title>Lithographic fabrication of microstructures by laser ablation using femtosecond laser $<$ /title>. , 2004, , .		1
123	Optical and electrical properites of ZnO nanorods synthesized by nanoparticle assisted pulsed laser deposition., 2005, 5713, 576.		1
124	Generation of new nanomaterials by interfering femtosecond laser processing and its applications. , 2006, , .		1
125	Effect of target structure on interfering femtosecond laser processing. , 2010, , .		1
126	Present status and future prospect of Fast Ignition Realization Experiment (FIREX) Project at ILE, Osaka. , 2010, , .		1

#	Article	IF	Citations
127	New evolution in interfering femtosecond laser processing., 2013,,.		1
128	Position-controlled and catalyst-free growth of ZnO nanocrystals by nanoparticle-assisted pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2014, 117, 63-67.	2.3	1
129	Precision performance for full-scale operation of LFEX PW laser. , 2015, , .		1
130	Quantitative $\hat{\text{Kl}}_{\pm}$ line spectroscopy for energytransport in fast ignition plasma driven with LFEX PW laser. High Energy Density Physics, 2015, 15, 78-81.	1.5	1
131	Synthesis of Sb-doped ZnO microspheres by pulsed laser ablation and their photoluminescence properties. , 2015, , .		1
132	Observation of the behavior of a laserâ€ablated plume by laser imaging spectroscopic techniques. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1998, 124, 18-26.	0.4	1
133	Fabrication of LiNbO/sub 3/ thin film by pulsed laser deposition and estimation of nonlinear property. , 0, , .		0
134	Visualization and control of Si nanoparticle behavior in laser-ablation plume. , 1998, , .		0
135	Laser-induced forward transfer: the effect of pulse width and target-substrate distance. , 1998, , .		0
136	Improved fluorescence characteristics of rare earth co-doping heavy-metal fluoride glasses for optical fiber amplifier. , 0 , , .		0
137	Fabrication of Ti:sapphire thin films by pulsed-laser deposition. , 0, , .		0
138	Laser-induced forward transfer: the behavior of the ablated thin film in gas phase. , 0 , , .		0
139	<title>Observation of nanoparticle formation process by two-dimensional laser-induced fluorescence, UV Rayleigh scattering, and re-decomposition laser-induced fluorescence methods</title> ., 2000, , .		0
140	Diagnostics of nanoparticle formation process by laser ablation in a background gas., 2002, 4637, 21.		0
141	Energy transfer mechanism and lasing performance in rare-earth-codoped ZBLAN., 2002, 4905, 343.		0
142	Rate equation analysis of fluorescence characteristics of Er; Yb; Ce codoped ZBLAN glass., 0,,.		0
143	Formation of periodic structures by laser ablation using interfered femtosecond laser beams. , 0, , .		0
144	Diagnostics of particle dynamics during deposition of optically functional thin films by laser ablation., 2003, 4830, 119.		0

#	Article	IF	CITATIONS
145	Application to the optical coherent tomography of fiber raman laser., 0, , .		О
146	Fabrication of micro and cyclic structure by using diffractive optics and femtosecond laser. , 2003, 4830, 488.		0
147	Transcriptional ablation using femtosecond laser with mask. , 2003, , .		0
148	Nanoparticle-assisted laser ablation deposition of nanostructured ZnO crystals., 2004, 5339, 357.		0
149	Synthesis of nanostructured ZnO by laser ablation in a background gas. , 2004, , .		0
150	<title>Microscopic and spectroscopic imaging of laser-induced forward transfer and its application to material transfer</title> ., 2004, , .		0
151	Generation of new nanomaterials by interfering femtosecond laser processing and its electronic application. , 0, , .		0
152	Technological Challenge and Activation of High-Energy PW Laser LFEX., 2007,,.		0
153	Observation of the behavior of a laser-ablated plume by laser imaging spectroscopic techniques. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1998, 124, 18-26.	0.4	0
154	Debris-free laser dicing for multi-layered mems. , 2008, , .		0
155	Generation of nano-structured surfaces by liquidly process induced by interfering femtosecond laser processing. , 2009, , .		0
156	Low stress dicing assisted by pulsed laser for multilayer MEMS. , 2009, , .		0
157	New Surface Nano-Structuring Technique Using Interfering Ultrafast Laser Processing. The Review of Laser Engineering, 2009, 37, 494-499.	0.0	0
158	Generation of new meta-materials by interfering femtosecond laser processing with phase shift and amplitude difference between the beams. , 2011, , .		0
159	Generation of complicated or duplicated structure by interfering femtosecond laser processing of metallic thin film. , 2011 , , .		0
160	Controlled growth of ZnO nanocrystals using laser interference irradiation. , 2013, , .		0
161	Energy Transportation by MeV Hot Electrons in Fast Ignition Plasma Driven with LFEX PW Laser. Plasma and Fusion Research, 2014, 9, 1404118-1404118.	0.7	0
162	Fabrication and applications of periodic nanostructures formed by interfering femtosecond laser proccessing. , 2014, , .		0

#	Article	IF	CITATIONS
163	Shape-controlled ZnO nanocrystals using multi-beam interference irradiation. Proceedings of SPIE, 2014, , .	0.8	0
164	Experimental investigation of CFRP cutting with nano second laser under air and Ar gas ambience. , $2015, , .$		0
165	The diagnostics of the energy coupling efficiency in the Fast Ignition integrated experiment. Journal of Physics: Conference Series, 2016, 688, 012004.	0.4	0
166	Quantitative $\hat{\text{Nl}}\pm$ line spectroscopy for energy transport in ultra-intense laser plasma interaction. Journal of Physics: Conference Series, 2016, 688, 012132.	0.4	0
167	Laser Lift-Off Process for Additive Micropatterning of Functional Particles and Films. , 2018, , .		0
168	\tilde{a}_{1} \tilde{a}_{3} \tilde{a}_{4} \tilde{a}_{5} \tilde{a}	0.0	0
169	Debris-free low-stress laser dicing for multi-layered MEMS wafers. , 2009, , .		0
170	Designing of Interference Pattern Using Coherent Beams and Fabrication of Gold Nanowhisker Arrayed in Matrix. The Review of Laser Engineering, 2013, 41, 811.	0.0	0
171	Report on CLEO/IQEC '98 The Review of Laser Engineering, 1998, 26, 631-651.	0.0	0
172	å§é~åå§å¦ ãf¬ãf¼ã,¶ãf¼ã,"ãfãf«ã,®ãf¼å¦ç"ç©¶ã,»ãf³ã,¿ãf¼. The Review of Laser Engineering, 2015, 43, 76	670.0	0
173	Bottom-Up Growth of One-Dimensional Semiconductor Nanocrystals by Laser Ablation. The Review of Laser Engineering, 2015, 43, 762.	0.0	0
174	Preface to Special Issue on "Progress in Laser Nanofabrication Technology― The Review of Laser Engineering, 2015, 43, 729.	0.0	0
175	Recent Progress of Interfering Ultra-fast Laser Processing Technique. IEEJ Transactions on Electronics, Information and Systems, 2015, 135, 1080-1084.	0.2	0
176	Nonthermal Processing by Ultrashort-Pulsed Laser. The Review of Laser Engineering, 2015, 43, 731.	0.0	0
177	Precision Beam Shaping by Spatial Frequency Filtering. IEEJ Transactions on Electronics, Information and Systems, 2022, 142, 445-449.	0.2	0