
Laszlo Acsady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2720044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science, 2019, 366, 250-254.	12.6	64
2	Heartless beat or beatless heart?. Nature Neuroscience, 2018, 21, 649-651.	14.8	1
3	A highly collateralized thalamic cell type with arousal-predicting activity serves as a key hub for graded state transitions in the forebrain. Nature Neuroscience, 2018, 21, 1551-1562.	14.8	60
4	Synaptic scaling in sleep. Science, 2017, 355, 457-457.	12.6	8
5	The thalamic paradox. Nature Neuroscience, 2017, 20, 901-902.	14.8	30
6	Distinct Thalamic Reticular Cell Types Differentially Modulate Normal and Pathological Cortical Rhythms. Cell Reports, 2017, 19, 2130-2142.	6.4	150
7	Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe. Journal of Neurophysiology, 2016, 116, 2312-2330.	1.8	33
8	Thalamic Inhibition: Diverse Sources, Diverse Scales. Trends in Neurosciences, 2016, 39, 680-693.	8.6	168
9	A subcortical inhibitory signal for behavioral arrest in the thalamus. Nature Neuroscience, 2015, 18, 562-568.	14.8	68
10	Phasic, Nonsynaptic GABA-A Receptor-Mediated Inhibition Entrains Thalamocortical Oscillations. Journal of Neuroscience, 2014, 34, 7137-7147.	3.6	46
11	A search for the searchlight – crossmodal interactions in the reticular thalamic nucleus (<scp>C</scp> ommentary on <scp>K</scp> imura). European Journal of Neuroscience, 2014, 39, 1403-1404.	2.6	0
12	Ongoing Network State Controls the Length of Sleep Spindles via Inhibitory Activity. Neuron, 2014, 82, 1367-1379.	8.1	109
13	Lateralization of observational fear learning at the cortical but not thalamic level in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15497-15501.	7.1	90
14	Drivers of the Primate Thalamus. Journal of Neuroscience, 2012, 32, 17894-17908.	3.6	100
15	Phase Advancement and Nucleus-Specific Timing of Thalamocortical Activity during Slow Cortical Oscillation. Journal of Neuroscience, 2011, 31, 607-617.	3.6	55
16	Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat. Journal of Comparative Neurology, 2008, 506, 122-140.	1.6	27
17	Vibrissal Responses of Thalamic Cells That Project to the Septal Columns of the Barrel Cortex and to the Second Somatosensory Area. Journal of Neuroscience, 2008, 28, 5169-5177.	3.6	31
18	Structural Correlates of Efficient GABAergic Transmission in the Basal Ganglia–Thalamus Pathway. Journal of Neuroscience, 2008, 28, 3090-3102.	3.6	73

LASZLO ACSADY

#	Article	IF	CITATIONS
19	Contrasting the Functional Properties of GABAergic Axon Terminals with Single and Multiple Synapses in the Thalamus. Journal of Neuroscience, 2008, 28, 11848-11861.	3.6	43
20	Models, structure, function: the transformation of cortical signals in the dentate gyrus. Progress in Brain Research, 2007, 163, 577-599.	1.4	93
21	Cortical Control of Zona Incerta. Journal of Neuroscience, 2007, 27, 1670-1681.	3.6	63
22	Corticothalamic 5-9 Hz oscillations are more pro-epileptogenic than sleep spindles in rats. Journal of Physiology, 2006, 574, 209-227.	2.9	59
23	Feedforward Inhibitory Control of Sensory Information in Higher-Order Thalamic Nuclei. Journal of Neuroscience, 2005, 25, 7489-7498.	3.6	168
24	Selective GABAergic Control of Higher-Order Thalamic Relays. Neuron, 2005, 45, 929-940.	8.1	157
25	Differential distribution of the KCl cotransporter KCC2 in thalamic relay and reticular nuclei. European Journal of Neuroscience, 2004, 20, 965-975.	2.6	44
26	Selective GABAergic innervation of thalamic nuclei from zona incerta. European Journal of Neuroscience, 2002, 16, 999-1014.	2.6	192
27	Distribution of CB1 Cannabinoid Receptors in the Amygdala and their Role in the Control of GABAergic Transmission. Journal of Neuroscience, 2001, 21, 9506-9518.	3.6	580
28	Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus. Journal of Neuroscience, 2000, 20, 6907-6919.	3.6	76
29	Nerve growth factor but not neurotrophin-3 is synthesized by hippocampal GABAergic neurons that project to the medial septum. Neuroscience, 2000, 98, 23-31.	2.3	22
30	Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience, 1999, 88, 37-55.	2.3	198
31	Expression of neurotrophins in hippocampal interneurons immunoreactive for the neuropeptides somatostatin, neuropeptide-Y, vasoactive intestinal polypeptide and cholecystokinin. Neuroscience, 1999, 89, 1089-1101.	2.3	22
32	Medial septal and median raphe innervation of vasoactive intestinal polypeptide-containing interneurons in the hippocampus. Neuroscience, 1999, 90, 369-382.	2.3	44
33	Structural basis of the cholinergic and serotonergic modulation of GABAergic neurons in the hippocampus. Neurochemistry International, 1999, 34, 359-372.	3.8	100
34	Expression of nerve growth factor and neurotrophin-3 mRNAs in hippocampal interneurons: Morphological characterization, levels of expression, and colocalization of nerve growth factor and neurotrophin-3. , 1998, 395, 73-90.		22
35	Feed-forward and feed-back activation of the dentate gyrus in vivo during dentate spikes and sharp wave bursts. , 1998, 7, 437-450.		128
36	Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: Activity-dependent phase-precession of action potentials. Hippocampus, 1998, 8, 244-261.	1.9	454

LASZLO ACSADY

#	Article	IF	CITATIONS
37	Gamma frequency oscillation in the hippocampus of the rat: intracellular analysisin vivo. European Journal of Neuroscience, 1998, 10, 718-728.	2.6	277
38	GABAergic Cells Are the Major Postsynaptic Targets of Mossy Fibers in the Rat Hippocampus. Journal of Neuroscience, 1998, 18, 3386-3403.	3.6	650
39	Dendritic Spikes Are Enhanced by Cooperative Network Activity in the Intact Hippocampus. Journal of Neuroscience, 1998, 18, 3919-3928.	3.6	225
40	Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience, 1997, 82, 355-376.	2.3	190
41	The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience, 1997, 82, 1053-1065.	2.3	57
42	Mossy Cells of the Rat Dentate Gyrus are Immunoreactive for Calcitonin Gene-related Peptide (CGRP). European Journal of Neuroscience, 1997, 9, 1815-1830.	2.6	52
43	Co-localization of vasoactive intestinal polypeptide, γ-aminobutyric acid and choline acetyltransferase in neocortical interneurons of the adult rat. Brain Research, 1997, 757, 209-217.	2.2	95
44	Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. Journal of Comparative Neurology, 1997, 378, 320-336.	1.6	60
45	Immunostaining for substance P receptor labels GABAergic cells with distinct termination patterns in the hippocampus. Journal of Comparative Neurology, 1997, 378, 320-36.	1.6	17
46	Different populations of vasoactive intestinal polypeptide-immunoreactive interneurons are specialized to control pyramidal cells or interneurons in the hippocampus. Neuroscience, 1996, 73, 317-334.	2.3	288
47	Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus. Neuroscience, 1996, 73, 299-315.	2.3	176
48	Expression of NGF and NT3 mRNAs in Hippocampal Interneurons Innervated by the GABAergic Septohippocampal Pathway. Journal of Neuroscience, 1996, 16, 3991-4004.	3.6	80
49	Target Selectivity and Neurochemical Characteristics of VIP-immunoreactive Interneurons in the Rat Dentate Gyrus. European Journal of Neuroscience, 1996, 8, 1415-1431.	2.6	86
50	Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biologica Hungarica, 1996, 47, 9-19.	0.7	35
51	Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus, 1994, 4, 322-334.	1.9	131
52	Differential Effects of Serotonin and Raphe Grafts in the Hippocampus and Hypothalamus: A Combined Behavioural and Anatomical Study in the Rat. European Journal of Neuroscience, 1994, 6, 1720-1728.	2.6	11
53	Calretinin is present in non-pyramidal cells of the rat hippocampus—III. Their inputs from the median raphe and medial septal nuclei. Neuroscience, 1993, 52, 829-841.	2.3	115
54	The effects of p-chlorophenylalanine-induced serotinin synthesis inhibition and muscarinic blockade on the performance of rats in a 5-choice serial reaction time task. Behavioural Brain Research, 1992, 51, 29-40.	2.2	81

#	Article	IF	CITATIONS
55	Septal GABAergic neurons innervate inhibitory interneurons in the hippocampus of the macaque monkey. Neuroscience, 1991, 41, 381-390.	2.3	85
56	Serotonergic control of the hippocampus via local inhibitory interneurons Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 8501-8505.	7.1	341