
Randall J Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous Partial Oxidation of Methane to Methanol Catalyzed by Diffusion-Paired Copper Dimers in Copper-Exchanged Zeolites. Journal of the American Chemical Society, 2019, 141, 11641-11650.	13.7	191
2	Single-Atom Alloy Pd–Ag Catalyst for Selective Hydrogenation of Acrolein. Journal of Physical Chemistry C, 2015, 119, 18140-18148.	3.1	150
3	Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catalysis, 2018, 8, 8306-8313.	11.2	133
4	Selective Catalytic Olefin Epoxidation with Mn ^{II} -Exchanged MOF-5. ACS Catalysis, 2018, 8, 596-601.	11.2	105
5	Effect of Particle Size and Adsorbates on the L3, L2 and L1 X-ray Absorption Near Edge Structure of Supported Pt Nanoparticles. Topics in Catalysis, 2011, 54, 334-348.	2.8	101
6	Selective Oxidation of Methane to Methanol Using Supported AuPd Catalysts Prepared by Stabilizer-Free Sol-Immobilization. ACS Catalysis, 2018, 8, 2567-2576.	11.2	99
7	<i>In situ</i> electron energy loss spectroscopy study of metallic Co and Co oxides. Journal of Applied Physics, 2010, 108, .	2.5	84
8	Modifying structure-sensitive reactions by addition of Zn to Pd. Journal of Catalysis, 2014, 318, 75-84.	6.2	80
9	Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catalysis, 2020, 10, 7820-7825.	11.2	50
10	Selective Adsorption of Manganese onto Rhodium for Optimized Mn/Rh/SiO ₂ Alcohol Synthesis Catalysts. ChemCatChem, 2013, 5, 3665-3672.	3.7	42
11	In search of membrane-catalyst materials for oxidative coupling of methane: Performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping. Applied Catalysis B: Environmental, 2018, 230, 29-35.	20.2	36
12	Electron energy-loss spectroscopy study of metallic Nb and Nb oxides. Journal of Applied Physics, 2011, 110, .	2.5	32
13	Synthesis and Characterization of Semiconductor Tantalum Nitride Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 647-652.	3.1	30
14	CO+NO versus CO+O ₂ Reaction on Monolayer FeO(111) Films on Pt(111). ChemCatChem, 2011, 3, 671-674.	3.7	29
15	Perturbation of Reactivity with Geometry: How Far Can We Go?. ACS Catalysis, 2018, 8, 566-570.	11.2	25
16	Discrete Polyoxopalladates as Molecular Precursors for Supported Palladium Metal Nanoparticles as Hydrogenation Catalysts. Inorganic Chemistry, 2019, 58, 5576-5582.	4.0	24
17	Oxidative Coupling of Methane over Hybrid Membrane/Catalyst Active Centers: Chemical Requirements for Prolonged Lifetime. ACS Energy Letters, 2019, 4, 1465-1470.	17.4	18
18	The Influence of Preparation Method on Mn–Co Interactions in Mn/Co/TiO ₂ Fischer–Tropsch Catalysts. ChemCatChem, 2010, 2, 1065-1068.	3.7	16

Randall J Meyer

#	Article	IF	CITATIONS
19	Evidence for geometric effects in neopentane conversion on PdAu catalysts. Catalysis Science and Technology, 2014, 4, 4366-4377.	4.1	15
20	Catalyst Design for Selective Hydrogenation of Benzene to Cyclohexene through Density Functional Theory and Microkinetic Modeling. ACS Catalysis, 2021, 11, 11831-11842.	11.2	14
21	A Comparative Density Functional Theory Study of Water Gas Shift Over PdZn(111) and NiZn(111). Topics in Catalysis, 2012, 55, 313-321.	2.8	12
22	Generalized approach for the synthesis of silica supported Pd-Zn, Cu-Zn and Ni-Zn gamma brass phase nanoparticles. Catalysis Today, 2019, 334, 231-242.	4.4	9
23	Breaking the Selectivity-Conversion Limit of Partial Methane Oxidation with Tandem Heterogeneous Catalysts. ACS Catalysis, 2021, 11, 9262-9270.	11.2	8
24	Catalytic limitations on alkane dehydrogenation under H ₂ deficient conditions relevant to membrane reactors. Energy and Environmental Science, 2022, 15, 2120-2129.	30.8	8
25	An analytical scanning transmission electron microscopy study of the support effects on Mn-promoted Co Fischer–Tropsch catalysts. Catalysis Science and Technology, 2011, 1, 1483.	4.1	7
26	In-Situ Electron Energy Loss Spectroscopy Study of Mn-Promoted Co/TiO2 Fischer–Tropsch Catalysts. Catalysis Letters, 2011, 141, 641-648.	2.6	7
27	Competitive Hydrogenation between Linear Alkenes and Aromatics on Close-Packed Late Transition Metal Surfaces. Journal of Physical Chemistry C, 2019, 123, 8370-8378.	3.1	5
28	Chemical Analysis with Single Atom Sensitivity Using Aberration-Corrected STEM. Microscopy and Microanalysis, 2014, 20, 56-57.	0.4	1