Gabriela da Silva Xavier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2719421/publications.pdf

Version: 2024-02-01

50 papers

4,117 citations

147801 31 h-index 49 g-index

53 all docs 53 docs citations

53 times ranked 5130 citing authors

#	Article	IF	CITATIONS
1	Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants. Diabetes, 2009, 58, 2070-2083.	0.6	347
2	Roles of 5′-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochemical Journal, 2003, 375, 1-16.	3.7	310
3	Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochemical Journal, 2003, 371, 761-774.	3.7	253
4	miR-29a and miR-29b Contribute to Pancreatic \hat{l}^2 -Cell-Specific Silencing of Monocarboxylate Transporter 1 (Mct1). Molecular and Cellular Biology, 2011, 31, 3182-3194.	2.3	245
5	Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia, 2004, 47, 1592-1601.	6.3	208
6	Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4023-4028.	7.1	195
7	TCF7L2 Regulates Late Events in Insulin Secretion From Pancreatic Islet β-Cells. Diabetes, 2009, 58, 894-905.	0.6	185
8	Glucagon-like peptide-1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta-cells. Biochemical Journal, 2003, 369, 287-299.	3.7	179
9	The Cells of the Islets of Langerhans. Journal of Clinical Medicine, 2018, 7, 54.	2.4	151
10	Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E1023-E1031.	3.5	150
11	Dynamic Changes in Cytosolic and Mitochondrial ATP Levels in Pancreatic Acinar Cells. Gastroenterology, 2010, 138, 1976-1987.e5.	1.3	120
12	Abnormal glucose tolerance and insulin secretion in pancreas-specific Tcf7l2-null mice. Diabetologia, 2012, 55, 2667-2676.	6.3	103
13	Glucose-stimulated Preproinsulin Gene Expression and Nucleartrans-Location of Pancreatic Duodenum Homeobox-1 Require Activation of Phosphatidylinositol 3-Kinase but Not p38 MAPK/SAPK2. Journal of Biological Chemistry, 2000, 275, 15977-15984.	3.4	102
14	Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia, 2014, 57, 122-128.	6.3	102
15	Ablation of AMP-activated protein kinase $\hat{l}\pm 1$ and $\hat{l}\pm 2$ from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo. Diabetologia, 2010, 53, 924-936.	6.3	99
16	$5\hat{a}\in^2$ -AMP-activated Protein Kinase Controls Insulin-containing Secretory Vesicle Dynamics. Journal of Biological Chemistry, 2003, 278, 52042-52051.	3.4	94
17	Selective disruption of Tcf7l2 in the pancreatic \hat{l}^2 cell impairs secretory function and lowers \hat{l}^2 cell mass. Human Molecular Genetics, 2015, 24, 1390-1399.	2.9	89
18	Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress. Human Molecular Genetics, 2007, 17, 190-200.	2.9	85

#	Article	IF	CITATIONS
19	Distinct roles for insulin and insulin-like growth factor-1 receptors in pancreatic beta-cell glucose sensing revealed by RNA silencing. Biochemical Journal, 2004, 377, 149-158.	3.7	81
20	Regulation of Gene Expression by Glucose in Pancreatic β-Cells (MIN6) via Insulin Secretion and Activation of Phosphatidylinositol 3′-Kinase. Journal of Biological Chemistry, 2000, 275, 36269-36277.	3.4	77
21	ChREBP binding to fatty acid synthase and L-type pyruvate kinase genes is stimulated by glucose in pancreatic \hat{l}^2 -cells. Journal of Lipid Research, 2006, 47, 2482-2491.	4.2	76
22	Involvement of Per-Arnt-Sim (PAS) kinase in the stimulation of preproinsulin and pancreatic duodenum homeobox 1 gene expression by glucose. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8319-8324.	7.1	66
23	Stimulation of Acetyl-CoA Carboxylase Gene Expression by Glucose Requires Insulin Release and Sterol Regulatory Element Binding Protein 1c in Pancreatic MIN6 Â-Cells. Diabetes, 2002, 51, 2536-2545.	0.6	64
24	TCF7L2 controls insulin gene expression and insulin secretion in mature pancreatic β-cells. Biochemical Society Transactions, 2008, 36, 357-359.	3.4	61
25	Carbohydrate-Responsive Element-Binding Protein (ChREBP) Is a Negative Regulator of ARNT/HIF-1Î ² Gene Expression in Pancreatic Islet Î ² -Cells. Diabetes, 2010, 59, 153-160.	0.6	61
26	Neuronatin regulates pancreatic \hat{l}^2 cell insulin content and secretion. Journal of Clinical Investigation, 2018, 128, 3369-3381.	8.2	47
27	Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion. Diabetologia, 2011, 54, 819-827.	6.3	46
28	Sarco(endo)plasmic reticulum ATPase is a molecular partner of Wolfram syndrome 1 protein, which negatively regulates its expression. Human Molecular Genetics, 2015, 24, 814-827.	2.9	46
29	ATP depletion inhibits Ca2+ release, influx and extrusion in pancreatic acinar cells but not pathological Ca2+ responses induced by bile. Pflugers Archiv European Journal of Physiology, 2008, 455, 1025-1039.	2.8	37
30	The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia, 2020, 63, 1368-1381.	6. 3	37
31	An alternative polyadenylation signal in TCF7L2 generates isoforms that inhibit T cell factor/lymphoid-enhancer factor (TCF/LEF)-dependent target genes. Diabetologia, 2011, 54, 3078-3082.	6. 3	35
32	Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochemical and Biophysical Research Communications, 2010, 399, 155-161.	2.1	30
33	Nucleo-cytosolic Shuttling of FoxO1 Directly Regulates Mouse Ins2 but Not Ins1 Gene Expression in Pancreatic Beta Cells (MIN6). Journal of Biological Chemistry, 2011, 286, 13647-13656.	3.4	30
34	Regulation by Per-Arnt-Sim (PAS) kinase of pancreatic duodenal homeobox-1 nuclear import in pancreatic \hat{l}^2 -cells. Biochemical Society Transactions, 2006, 34, 791-793.	3.4	28
35	Animal Models of GWAS-Identified Type 2 Diabetes Genes. Journal of Diabetes Research, 2013, 2013, 1-12.	2.3	28
36	Divergent Effects of Liraglutide, Exendin-4, and Sitagliptin on Beta-Cell Mass and Indicators of Pancreatitis in a Mouse Model of Hyperglycaemia. PLoS ONE, 2014, 9, e104873.	2.5	28

#	Article	IF	CITATIONS
37	Metabolic and Functional Heterogeneity in Pancreatic \hat{l}^2 Cells. Journal of Molecular Biology, 2020, 432, 1395-1406.	4.2	24
38	Importin beta1 mediates the glucose-stimulated nuclear import of pancreatic and duodenal homeobox-1 in pancreatic islet beta-cells (MIN6). Biochemical Journal, 2004, 378, 219-227.	3.7	23
39	ChREBP regulates Pdx-1 and other glucose-sensitive genes in pancreatic \hat{l}^2 -cells. Biochemical and Biophysical Research Communications, 2010, 402, 252-257.	2.1	23
40	LKB1 and AMPK $\hat{l}\pm 1$ are required in pancreatic alpha cells for the normal regulation of glucagon secretion and responses to hypoglycemia. Molecular Metabolism, 2015, 4, 277-286.	6.5	23
41	Transcription factor-7–like 2 (TCF7L2) gene acts downstream of the Lkb1/Stk11 kinase to control mTOR signaling, β cell growth, and insulin secretion. Journal of Biological Chemistry, 2018, 293, 14178-14189.	3.4	19
42	Down-regulation of vascular GLP-1 receptor expression in human subjects with obesity. Scientific Reports, 2018, 8, 10644.	3.3	19
43	Pancreatic alpha cell-selective deletion of Tcf7l2 impairs glucagon secretion and counter-regulatory responses to hypoglycaemia in mice. Diabetologia, 2017, 60, 1043-1050.	6.3	18
44	Adipocyte-specific deletion of Tcf7l2 induces dysregulated lipid metabolism and impairs glucose tolerance in mice. Diabetologia, 2021, 64, 129-141.	6.3	17
45	AMP- and stress-activated protein kinases: Key regulators of glucose-dependent gene transcription in mammalian cells?. Progress in Molecular Biology and Translational Science, 2002, 71, 69-90.	1.9	15
46	Convolutional neural networks for reconstruction of undersampled optical projection tomography data applied to in vivo imaging of zebrafish. Journal of Biophotonics, 2019, 12, e201900128.	2.3	13
47	Mouse models of peripheral metabolic disease. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 299-315.	4.7	12
48	Cell type-specific deletion in mice reveals roles for PAS kinase in insulin and glucagon production. Diabetologia, 2016, 59, 1938-1947.	6.3	10
49	Imaging glucose-regulated insulin secretion and gene expression in single islet \hat{l}^2 -cells. Cell Biochemistry and Biophysics, 2004, 40, 179-190.	1.8	3
50	Protein Kinases and Pancreatic Islet Function. , 0, , .		0