
Cleber A Trujillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2718280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA processing in neurological tissue: development, aging and disease. Seminars in Cell and Developmental Biology, 2021, 114, 57-67.	5.0	7
2	Reintroduction of the archaic variant of <i>NOVA1</i> in cortical organoids alters neurodevelopment. Science, 2021, 371, .	12.6	96
3	Autism-linked Cullin3 germline haploinsufficiency impacts cytoskeletal dynamics and cortical neurogenesis through RhoA signaling. Molecular Psychiatry, 2021, 26, 3586-3613.	7.9	26
4	Altered network and rescue of human neurons derived from individuals with early-onset genetic epilepsy. Molecular Psychiatry, 2021, 26, 7047-7068.	7.9	38
5	All-Optical Electrophysiology in hiPSC-Derived Neurons With Synthetic Voltage Sensors. Frontiers in Cellular Neuroscience, 2021, 15, 671549.	3.7	3
6	MeCP2 controls neural stem cell fate specification through miR-199a-mediated inhibition of BMP-Smad signaling. Cell Reports, 2021, 35, 109124.	6.4	22
7	Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Molecular Psychiatry, 2021, 26, 7560-7580.	7.9	61
8	Pharmacological reversal of synaptic and network pathology in human <i>MECP2</i> â€KO neurons and cortical organoids. EMBO Molecular Medicine, 2021, 13, e12523.	6.9	53
9	Response to Comment on "Reintroduction of the archaic variant of <i>NOVA1</i> in cortical organoids alters neurodevelopment― Science, 2021, 374, eabi9881.	12.6	8
10	Modeling Rett Syndrome With Human Patient-Specific Forebrain Organoids. Frontiers in Cell and Developmental Biology, 2020, 8, 610427.	3.7	49
11	Methadone Suppresses Neuronal Function and Maturation in Human Cortical Organoids. Frontiers in Neuroscience, 2020, 14, 593248.	2.8	9
12	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
13	Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell, 2019, 25, 558-569.e7.	11.1	520
14	Stem cell contributions to neurological disease modeling and personalized medicine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 54-62.	4.8	15
15	Brain Organoids and the Study of Neurodevelopment. Trends in Molecular Medicine, 2018, 24, 982-990.	6.7	83
16	Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 2017, 22, 820-835.	7.9	349
17	Modeling of TREX1-Dependent Autoimmune Disease using Human Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. Cell Stem Cell, 2017, 21, 319-331.e8.	11.1	254
18	A human neurodevelopmental model for Williams syndrome. Nature, 2016, 536, 338-343.	27.8	166

2

CLEBER A TRUJILLO

#	Article	IF	CITATIONS
19	Bradykinin promotes neuron-generating division of neural progenitor cells via ERK activation. Journal of Cell Science, 2016, 129, 3437-48.	2.0	26
20	Cockayne syndrome-derived neurons display reduced synapse density and altered neural network synchrony. Human Molecular Genetics, 2016, 25, 1271-1280.	2.9	33
21	Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3185-3190.	7.1	136
22	Bradykinin promotes neuron-generating division of neural progenitor cells through ERK activation. Development (Cambridge), 2016, 143, e1.1-e1.1.	2.5	0
23	Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. ELife, 2015, 4, .	6.0	25
24	Stem cells and modeling of autism spectrum disorders. Experimental Neurology, 2014, 260, 33-43.	4.1	18
25	Interactions between the NO-Citrulline Cycle and Brain-derived Neurotrophic Factor in Differentiation of Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 29690-29701.	3.4	30
26	Kinin-B2 Receptor Activity Determines the Differentiation Fate of Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 44046-44061.	3.4	41
27	Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2009, 75A, 38-53.	1.5	86
28	Kininâ€B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2008, 73A, 361-368.	1.5	46