## Mark Bycroft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2717113/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | SWI/SNF subunit BAF155 N-terminus structure informs the impact of cancer-associated mutations and reveals a potential drug binding site. Communications Biology, 2021, 4, 528.                                                                                                                                                    | 4.4 | 5         |
| 2  | Structure of the BRK domain of the SWI/SNF chromatin remodeling complex subunit BRG1 reveals a potential role in protein–protein interactions. Protein Science, 2020, 29, 1033-1039.                                                                                                                                              | 7.6 | 17        |
| 3  | Crystal Structures and Nuclear Magnetic Resonance Studies of the Apo Form of the c-MYC:MAX<br>bHLHZip Complex Reveal a Helical Basic Region in the Absence of DNA. Biochemistry, 2019, 58, 3144-3154.                                                                                                                             | 2.5 | 38        |
| 4  | The structure of <scp>INI</scp> 1/ <scp>hSNF</scp> 5 <scp>RPT</scp> 1 and its interactions with the<br>câ€ <scp>MYC</scp> : <scp>MAX</scp> heterodimer provide insights into the interplay between<br><scp>MYC</scp> and the <scp>SWI</scp> / <scp>SNF</scp> chromatin remodeling complex. FEBS<br>Journal, 2018, 285, 4165-4180. | 4.7 | 22        |
| 5  | Recruitment of <scp>TBK</scp> 1 to cytosolâ€invading <i>Salmonella</i> induces <scp>WIPI</scp> 2â€dependent antibacterial autophagy. EMBO Journal, 2016, 35, 1779-1792.                                                                                                                                                           | 7.8 | 107       |
| 6  | High-resolution NMR structures of the domains ofSaccharomyces cerevisiaeTho1. Acta<br>Crystallographica Section F, Structural Biology Communications, 2016, 72, 500-506.                                                                                                                                                          | 0.8 | 0         |
| 7  | The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy. PLoS Pathogens, 2015, 11, e1005174.                                                                                                                                                           | 4.7 | 177       |
| 8  | Solution structure of a soluble fragment derived from a membrane protein by shotgun proteolysis.<br>Protein Engineering, Design and Selection, 2015, 28, 445-450.                                                                                                                                                                 | 2.1 | 4         |
| 9  | The SWI/SNF Subunit INI1 Contains an N-Terminal Winged Helix DNA Binding Domain that Is a Target for Mutations in Schwannomatosis. Structure, 2015, 23, 1344-1349.                                                                                                                                                                | 3.3 | 33        |
| 10 | An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma. Human Molecular Genetics, 2014, 23, 5976-5988.                                                                                                                                                          | 2.9 | 21        |
| 11 | A highâ€resolution structure of the EFâ€hand domain of human polycystinâ€2. Protein Science, 2014, 23,<br>1301-1308.                                                                                                                                                                                                              | 7.6 | 26        |
| 12 | Structural basis for <scp>P</scp> an3 binding to <scp>P</scp> an2 and its function in <scp>mRNA</scp> recruitment and deadenylation. EMBO Journal, 2014, 33, 1514-1526.                                                                                                                                                           | 7.8 | 50        |
| 13 | The UBAP1 Subunit of ESCRT-I Interacts with Ubiquitin via a SOUBA Domain. Structure, 2012, 20, 414-428.                                                                                                                                                                                                                           | 3.3 | 88        |
| 14 | Structural basis of p63α SAM domain mutants involved in AEC syndrome. FEBS Journal, 2011, 278, 2680-2688.                                                                                                                                                                                                                         | 4.7 | 23        |
| 15 | Recognition of non-methyl histone marks. Current Opinion in Structural Biology, 2011, 21, 761-766.                                                                                                                                                                                                                                | 5.7 | 9         |
| 16 | The General Definition of the p97/Valosin-containing Protein (VCP)-interacting Motif (VIM) Delineates a<br>New Family of p97 Cofactors. Journal of Biological Chemistry, 2011, 286, 38670-38678.                                                                                                                                  | 3.4 | 58        |
| 17 | The structure of the FYR domain of transforming growth factor beta regulator 1. Protein Science, 2010, 19, 1432-1438.                                                                                                                                                                                                             | 7.6 | 33        |
| 18 | Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nature Structural and Molecular Biology, 2010, 17, 617-619.                                                                                                                                                                                          | 8.2 | 192       |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Molecular basis of the interactions between the p73 N terminus and p300: Effects on transactivation and modulation by phosphorylation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3142-3147. | 7.1 | 31        |
| 20 | VHL Mutations Linked to Type 2C von Hippel-Lindau Disease Cause Extensive Structural Perturbations<br>in pVHL. Journal of Biological Chemistry, 2009, 284, 10514-10522.                                                                       | 3.4 | 20        |
| 21 | Solution structure of the FCS zinc finger domain of the human polycomb group protein L(3)mbtâ€like 2.<br>Protein Science, 2009, 18, 657-661.                                                                                                  | 7.6 | 10        |
| 22 | The Malignant Brain Tumor Repeats of Human SCML2 Bind to Peptides Containing Monomethylated<br>Lysine. Journal of Molecular Biology, 2008, 382, 1107-1112.                                                                                    | 4.2 | 31        |
| 23 | Structural Consequences of Nucleophosmin Mutations in Acute Myeloid Leukemia. Journal of<br>Biological Chemistry, 2008, 283, 23326-23332.                                                                                                     | 3.4 | 107       |
| 24 | Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7009-7014.                                  | 7.1 | 190       |
| 25 | Solution Structure of the BRK Domains from CHD7. Journal of Molecular Biology, 2007, 371, 1135-1140.                                                                                                                                          | 4.2 | 34        |
| 26 | The solution structure of the ZnF UBP domain of USP33/VDU1. Protein Science, 2007, 16, 2072-2075.                                                                                                                                             | 7.6 | 28        |
| 27 | Solution structure of the C4 zinc finger domain of HDM2. Protein Science, 2006, 15, 384-389.                                                                                                                                                  | 7.6 | 36        |
| 28 | Functional Analysis of the Post-transcriptional Regulator RsmA Reveals a Novel RNA-binding Site.<br>Journal of Molecular Biology, 2006, 355, 1026-1036.                                                                                       | 4.2 | 87        |
| 29 | The FtsK Î <sup>3</sup> domain directs oriented DNA translocation by interacting with KOPS. Nature Structural and Molecular Biology, 2006, 13, 965-972.                                                                                       | 8.2 | 92        |
| 30 | Solution structure of the nonmethyl-CpG-binding CXXC domain of the leukaemia-associated MLL histone methyltransferase. EMBO Journal, 2006, 25, 4503-4512.                                                                                     | 7.8 | 146       |
| 31 | The PUB Domain Functions as a p97 Binding Module in Human Peptide N-Glycanase. Journal of<br>Biological Chemistry, 2006, 281, 25502-25508.                                                                                                    | 3.4 | 84        |
| 32 | The macro domain is an ADP-ribose binding module. EMBO Journal, 2005, 24, 1911-1920.                                                                                                                                                          | 7.8 | 439       |
| 33 | Role of Conformational Heterogeneity in Domain Swapping and Adapter Function of the Cks Proteins.<br>Journal of Biological Chemistry, 2005, 280, 30448-30459.                                                                                 | 3.4 | 23        |
| 34 | Crystal Structure of a Hyperthermophilic Archaeal Acylphosphatase fromPyrococcus<br>horikoshiiStructural Insights into Enzymatic Catalysis, Thermostability, and Dimerizationâ€,‡.<br>Biochemistry, 2005, 44, 4601-4611.                      | 2.5 | 35        |
| 35 | Electrostatic Interactions Contribute to Reduced Heat Capacity Change of Unfolding in a Thermophilic Ribosomal Protein L30e. Journal of Molecular Biology, 2005, 348, 419-431.                                                                | 4.2 | 44        |
| 36 | Comparative Binding of p53 to its Promoter and DNA Recognition Elements. Journal of Molecular<br>Biology, 2005, 348, 589-596.                                                                                                                 | 4.2 | 167       |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Solution Structure of the Kaposi's Sarcoma-associated Herpesvirus K3 N-terminal Domain Reveals a<br>Novel E2-binding C4HC3-type RING Domain. Journal of Biological Chemistry, 2004, 279, 53840-53847.                              | 3.4 | 85        |
| 38 | NMR Structure of the α-Hemoglobin Stabilizing Protein. Journal of Biological Chemistry, 2004, 279, 34963-34970.                                                                                                                    | 3.4 | 52        |
| 39 | The Structure of the AXH Domain of Spinocerebellar Ataxin-1. Journal of Biological Chemistry, 2004, 279, 3758-3765.                                                                                                                | 3.4 | 55        |
| 40 | Letter to Editor: Solution structure of the HPV-16 E2 DNA binding domain, a transcriptional regulator with a dimeric β-barrel fold. Journal of Biomolecular NMR, 2004, 30, 211-214.                                                | 2.8 | 25        |
| 41 | Crystallization and preliminary crystallographic analysis of a novel orange fluorescent protein from theCnidariatube anemoneCerianthussp Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 340-341.          | 2.5 | 11        |
| 42 | Crystallization and preliminary crystallographic analysis of an acylphosphatase from the<br>hyperthermophilic archaeonPyrococcus horikoshii. Acta Crystallographica Section D: Biological<br>Crystallography, 2004, 60, 1308-1310. | 2.5 | 7         |
| 43 | Regulation of DNA Binding of p53 by its C-terminal Domain. Journal of Molecular Biology, 2004, 342, 801-811.                                                                                                                       | 4.2 | 94        |
| 44 | Solution structure and thermal stability of ribosomal protein L30e from hyperthermophilic archaeonThermococcus celer. Protein Science, 2003, 12, 1483-1495.                                                                        | 7.6 | 13        |
| 45 | Structure of the Jab1/MPN Domain and Its Implications for Proteasome Function. Biochemistry, 2003, 42, 11460-11465.                                                                                                                | 2.5 | 115       |
| 46 | Crystal Structure of Ribosomal Protein L30e from the Extreme ThermophileThermococcus celer:Â<br>Thermal Stability and RNA Bindingâ€,‡. Biochemistry, 2003, 42, 2857-2865.                                                          | 2.5 | 15        |
| 47 | Structural Variation in PWWP Domains. Journal of Molecular Biology, 2003, 330, 571-576.                                                                                                                                            | 4.2 | 38        |
| 48 | The Crystal Structure of AF1521 a Protein from Archaeoglobus fulgidus with Homology to the Non-histone Domain of MacroH2A. Journal of Molecular Biology, 2003, 330, 503-511.                                                       | 4.2 | 113       |
| 49 | Crystal Structure of the Malignant Brain Tumor (MBT) Repeats in Sex Comb on Midleg-like 2 (SCML2).<br>Journal of Biological Chemistry, 2003, 278, 46968-46973.                                                                     | 3.4 | 41        |
| 50 | Molecular Mechanism of the Interaction between MDM2 and p53. Journal of Molecular Biology, 2002, 323, 491-501.                                                                                                                     | 4.2 | 307       |
| 51 | The Structure of an FF Domain from Human HYPA/FBP11. Journal of Molecular Biology, 2002, 323, 411-416.                                                                                                                             | 4.2 | 82        |
| 52 | The UBX domain: a widespread ubiquitin-like module. Journal of Molecular Biology, 2001, 307, 17-24.                                                                                                                                | 4.2 | 130       |
| 53 | The Ligand-Binding Loops in the Tunicate C-Type Lectin TC14 Are Rigid. Biochemistry, 2001, 40, 10966-10972.                                                                                                                        | 2.5 | 20        |
| 54 | Structure of the C-terminal sterile α-motif (SAM) domain of human p73α. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 545-551.                                                                           | 2.5 | 28        |

| #  | Article                                                                                                                                                                                                                                            | lF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Crystallization and preliminary crystallographic studies of a ribosomal protein L30e from the<br>hyperthermophilic archaeonThermococcus celer. Acta Crystallographica Section D: Biological<br>Crystallography, 2001, 57, 865-866.                 | 2.5  | 2         |
| 56 | Crystallization and preliminary crystallographic studies of a SAM domain at the C-terminus of human p73α. Acta Crystallographica Section D: Biological Crystallography, 2000, 56, 769-771.                                                         | 2.5  | 11        |
| 57 | RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO Journal, 2000, 19, 997-1009.                                                                                                                                                 | 7.8  | 331       |
| 58 | Letter to the editor: 1H, 13C and 15N NMR assignments of the C-type lectin TC14. Journal of Biomolecular NMR, 2000, 18, 283-284.                                                                                                                   | 2.8  | 3         |
| 59 | The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MltD) 1<br>1Edited by P. E. Wight. Journal of Molecular Biology, 2000, 299, 1113-1119.                                                                 | 4.2  | 402       |
| 60 | Biophysical Characterization of Elongin C from Saccharomyces cerevisiae. Biochemistry, 2000, 39, 11137-11146.                                                                                                                                      | 2.5  | 10        |
| 61 | Folding of a dimeric βâ€barrel: Residual structure in the urea denatured state of the human<br>papillomavirus E2 DNA binding domain. Protein Science, 2000, 9, 799-811.                                                                            | 7.6  | 16        |
| 62 | The structure of a tunicate C-type lectin from polyandrocarpa misakiensis complexed with d-galactose. Journal of Molecular Biology, 1999, 290, 867-879.                                                                                            | 4.2  | 94        |
| 63 | NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 291, 661-669. | 4.2  | 30        |
| 64 | Characterisation of urea-denatured states of an immunoglobulin superfamily domain by<br>heteronuclear NMR 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 278, 417-429.                                                             | 4.2  | 29        |
| 65 | Crystal Structure of a Calcium-Phospholipid Binding Domain from Cytosolic Phospholipase A2.<br>Journal of Biological Chemistry, 1998, 273, 1596-1604.                                                                                              | 3.4  | 256       |
| 66 | The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding<br>Fold. Cell, 1997, 88, 235-242.                                                                                                                 | 28.9 | 391       |
| 67 | Structure and Stability of an Immunoglobulin Superfamily Domain from Twitchin, a Muscle Protein of the NematodeCaenorhabditis elegans. Journal of Molecular Biology, 1996, 264, 624-639.                                                           | 4.2  | 59        |
| 68 | Equilibrium dissociation and unfolding of the dimeric human papillomavirus strainâ€16 E2 DNAâ€binding<br>domain. Protein Science, 1996, 5, 310-319.                                                                                                | 7.6  | 77        |
| 69 | The dimeric DNA binding domain of the human papillomavirus E2 protein folds through a monomeric intermediate which cannot be native-like. Nature Structural and Molecular Biology, 1996, 3, 711-717.                                               | 8.2  | 35        |
| 70 | A Comparison of the pH, Urea, and Temperature-denatured States of Barnase by Heteronuclear NMR:<br>Implications for the Initiation of Protein Folding. Journal of Molecular Biology, 1995, 254, 305-321.                                           | 4.2  | 134       |
| 71 | Assignment of the backbone1H,15N,13C NMR resonances and secondary structure of a double-stranded RNA binding domain from theDrosophilaprotein staufen. FEBS Letters, 1995, 362, 333-336.                                                           | 2.8  | 9         |
| 72 | Three-dimensional solution structure and 13C assignments of barstar using nuclear magnetic resonance spectroscopy. Biochemistry, 1994, 33, 8866-8877.                                                                                              | 2.5  | 110       |

| #  | Article                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Letters, 1993, 331, 165-172.                        | 2.8  | 38        |
| 74 | Assignment of the backbone1H and15N NMR resonances and secondary structure characterization of barstar. FEBS Letters, 1993, 332, 81-87.                             | 2.8  | 20        |
| 75 | Structure and dynamics of barnase complexed with 3'-GMP studied by NMR spectroscopy. Biochemistry, 1993, 32, 10975-10987.                                           | 2.5  | 25        |
| 76 | The folding of an enzyme. Journal of Molecular Biology, 1992, 224, 837-845.                                                                                         | 4.2  | 100       |
| 77 | Determination of the three-dimensional solution structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry, 1991, 30, 8697-8701.              | 2.5  | 125       |
| 78 | Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis and NMR. Biochemistry, 1991, 30, 11348-11356.                      | 2.5  | 33        |
| 79 | Aromatic-aromatic interactions and protein stability. Journal of Molecular Biology, 1991, 218, 465-475.                                                             | 4.2  | 315       |
| 80 | Surface electrostatic interactions contribute little to stability of barnase. Journal of Molecular<br>Biology, 1991, 220, 779-788.                                  | 4.2  | 176       |
| 81 | Physical-organic molecular biology: pathway and stability of protein folding. Pure and Applied<br>Chemistry, 1991, 63, 187-194.                                     | 1.9  | 7         |
| 82 | Transient folding intermediates characterized by protein engineering. Nature, 1990, 346, 440-445.                                                                   | 27.8 | 501       |
| 83 | Detection and characterization of a folding intermediate in barnase by NMR. Nature, 1990, 346, 488-490.                                                             | 27.8 | 241       |
| 84 | Sequential assignment of the proton nuclear magnetic resonance spectrum of barnase. Biochemistry, 1990, 29, 7425-7432.                                              | 2.5  | 39        |
| 85 | Strength and co-operativity of contributions of surface salt bridges to protein stability. Journal of<br>Molecular Biology, 1990, 216, 1031-1044.                   | 4.2  | 410       |
| 86 | Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry, 1990, 29, 9343-9352. | 2.5  | 390       |
| 87 | Stabilization of protein structure by interaction of α-helix dipole with a charged side chain. Nature, 1988, 335, 740-743.                                          | 27.8 | 239       |
| 88 | Assignment of histidine resonances in the proton NMR (500 MHz) spectrum of subtilisin BPN' using site-directed mutagenesis. Biochemistry, 1988, 27, 7390-7394.      | 2.5  | 16        |
| 89 | Amperometric enzyme electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 218, 119-126.                                        | 0.1  | 64        |