German Salazar-Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2716226/publications.pdf Version: 2024-02-01

	66343	53230
7,474	42	85
citations	h-index	g-index
113	113	10699
docs citations	times ranked	citing authors
	7,474 citations 113 docs citations	7,47442citationsh-index113113docs citationstimes ranked

#	Article	IF	CITATIONS
1	Low-field-induced spin-glass behavior and controllable anisotropy in nanoparticle assemblies at a liquid-air interface. Science China Materials, 2022, 65, 193-200.	6.3	4
2	Electrodeposited PdNi on a Ni rotating disk electrode highly active for glycerol electrooxidation in alkaline conditions. Electrochimica Acta, 2022, 403, 139714.	5.2	11
3	The Impact of Surface Charges of Carboxylated Cellulose Nanofibrils on the Water Motions in Hydrated Films. Biomacromolecules, 2022, 23, 3104-3115.	5.4	5
4	Probing the meta-stability of oxide core/shell nanoparticle systems at atomic resolution. Chemical Engineering Journal, 2021, 405, 126820.	12.7	8
5	TEMPO-oxidized cellulose nanofibers as versatile additives for highly stable silicon anode in lithium-ion batteries. Electrochimica Acta, 2021, 369, 137708.	5.2	14
6	Synthetic Pathway Determines the Nonequilibrium Crystallography of Li- and Mn-Rich Layered Oxide Cathode Materials. ACS Applied Energy Materials, 2021, 4, 1924-1935.	5.1	15
7	Efficient Screening of Bi–Metallic Electrocatalysts for Glycerol Valorization. Electrochimica Acta, 2021, 398, 139283.	5.2	8
8	Giant exchange bias in micro-sized magnetic shape memory alloy particles. Journal Physics D: Applied Physics, 2021, 54, 045001.	2.8	3
9	Neither Sphere nor Cube—Analyzing the Particle Shape Using Small-Angle Scattering and the Superball Model. Journal of Physical Chemistry C, 2021, 125, 23356-23363.	3.1	7
10	Electrocatalytic Glycerol Oxidation with Concurrent Hydrogen Evolution Utilizing an Efficient MoO <i>_x</i> /Pt Catalyst. Small, 2021, 17, e2104288.	10.0	63
11	SANS study of mixed cholesteric cellulose nanocrystal – gold nanorod suspensions. Chemical Communications, 2020, 56, 13001-13004.	4.1	13
12	Facile preparation of cellulose nanofiber derived carbon and reduced graphene oxide co-supported LiFePO4 nanocomposite as enhanced cathode material for lithium-ion battery. Electrochimica Acta, 2020, 354, 136707.	5.2	39
13	Feasibility of Chemically Modified Cellulose Nanofiber Membranes as Lithium-Ion Battery Separators. ACS Applied Materials & Interfaces, 2020, 12, 41211-41222.	8.0	30
14	In-Situ Growth of Metal Oxide Nanoparticles on Cellulose Nanofibrils for Dye Removal and Antimicrobial Applications. ACS Applied Nano Materials, 2020, 3, 7172-7181.	5.0	44
15	Hybrids based on borate-functionalized cellulose nanofibers and noble-metal nanoparticles as sustainable catalysts for environmental applications. RSC Advances, 2020, 10, 12460-12468.	3.6	7
16	Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions. Nanoscale, 2019, 11, 19278-19284.	5.6	17
17	Fabrication of Maghemite Nanoparticles with High Surface Area. Nanomaterials, 2019, 9, 1004.	4.1	7
18	Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions. Langmuir, 2019, 35, 2289-2302.	3.5	23

#	Article	IF	CITATIONS
19	Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose Dispersions. Langmuir, 2019, 35, 3600-3606.	3.5	25
20	One-Step Electro-Precipitation of Nanocellulose Hydrogels on Conducting Substrates and Its Possible Applications: Coatings, Composites, and Energy Devices. ACS Sustainable Chemistry and Engineering, 2019, 7, 19415-19425.	6.7	12
21	Highly proton conductive membranes based on carboxylated cellulose nanofibres and their performance in proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 25032-25039.	10.3	46
22	Lithium Ion Battery Separators Based On Carboxylated Cellulose Nanofibers From Wood. ACS Applied Energy Materials, 2019, 2, 1241-1250.	5.1	48
23	Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chemistry, 2018, 20, 2091-2100.	9.0	30
24	Experimental investigation of the flow and heat transfer of magnetic nanofluid in a vertical tube in the presence of magnetic quadrupole field. Experimental Thermal and Fluid Science, 2018, 91, 155-165.	2.7	50
25	Inducing nematic ordering of cellulose nanofibers using osmotic dehydration. Nanoscale, 2018, 10, 23157-23163.	5.6	13
26	Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale, 2018, 10, 18113-18118.	5.6	23
27	A novel textile-like carbon wrapping for high-performance silicon anodes in lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12475-12483.	10.3	42
28	Fully bio-based zwitterionic membranes with superior antifouling and antibacterial properties prepared <i>via</i> surface-initiated free-radical polymerization of poly(cysteine methacrylate). Journal of Materials Chemistry A, 2018, 6, 16361-16370.	10.3	61
29	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	10.3	30
30	High-Performance Magnetic Activated Carbon from Solid Waste from Lignin Conversion Processes. 1. Their Use As Adsorbents for CO ₂ . ACS Sustainable Chemistry and Engineering, 2017, 5, 3087-3095.	6.7	52
31	Superlattice growth and rearrangement during evaporation-induced nanoparticle self-assembly. Scientific Reports, 2017, 7, 2802.	3.3	66
32	Extensively interconnected silicon nanoparticles via carbon network derived from ultrathin cellulose nanofibers as high performance lithium ion battery anodes. Carbon, 2017, 118, 8-17.	10.3	58
33	Effects of Different Manufacturing Processes on TEMPO-Oxidized Carboxylated Cellulose Nanofiber Performance as Binder for Flexible Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 37712-37720.	8.0	22
34	3D Visualization of the Iron Oxidation State in FeO/Fe ₃ O ₄ Core–Shell Nanocubes from Electron Energy Loss Tomography. Nano Letters, 2016, 16, 5068-5073.	9.1	56
35	Tunable High-Field Magnetization in Strongly Exchange-Coupled Freestanding Co/CoO Core/Shell Coaxial Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 22477-22483.	8.0	26
36	Tuning the structure and habit of iron oxide mesocrystals. Nanoscale, 2016, 8, 15571-15580.	5.6	29

#	Article	IF	CITATIONS
37	Following in Real Time the Two-Step Assembly of Nanoparticles into Mesocrystals in Levitating Drops. Nano Letters, 2016, 16, 6838-6843.	9.1	60
38	Origin of the large dispersion of magnetic properties in nanostructured oxides: Fe _x O/Fe ₃ O ₄ nanoparticles as a case study. Nanoscale, 2015, 7, 3002-3015.	5.6	76
39	Fabrication of nanocellulose–hydroxyapatite composites and their application as water-resistant transparent coatings. Journal of Materials Chemistry B, 2015, 3, 5858-5863.	5.8	39
40	Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. Langmuir, 2015, 31, 6507-6513.	3.5	177
41	Mesocrystals in Biominerals and Colloidal Arrays. Accounts of Chemical Research, 2015, 48, 1391-1402.	15.6	156
42	Controlled molecular reorientation enables strong cellulose fibers regenerated from ionic liquid solutions. Polymer, 2015, 75, 119-124.	3.8	8
43	Thin Water Films at Multifaceted Hematite Particle Surfaces. Langmuir, 2015, 31, 13127-13137.	3.5	24
44	Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nature Nanotechnology, 2015, 10, 277-283.	31.5	1,103
45	Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Physics Reports, 2015, 553, 1-32.	25.6	391
46	Probing planar defects in nanoparticle superlattices by 3D small-angle electron diffraction tomography and real space imaging. Nanoscale, 2014, 6, 13803-13808.	5.6	12
47	Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Science and Technology of Advanced Materials, 2014, 15, 055010.	6.1	90
48	Macroscopic Control of Helix Orientation in Films Dried from Cholesteric Liquid rystalline Cellulose Nanocrystal Suspensions. ChemPhysChem, 2014, 15, 1477-1484.	2.1	136
49	Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Advances, 2014, 4, 17549.	3.6	129
50	Spin excitations in cubic maghemite nanoparticles studied by time-of-flight neutron spectroscopy. Physical Review B, 2014, 89, .	3.2	9
51	Dynamic growth modes of ordered arrays and mesocrystals during drop-casting of iron oxide nanocubes. CrystEngComm, 2014, 16, 1443-1450.	2.6	27
52	Oriented Aggregation of Lepidocrocite and Impact on Surface Charge Development. Langmuir, 2014, 30, 9017-9021.	3.5	20
53	Atomic-Resolution Monitoring of Structural Phase Transition in Bi-magnetic Core/Shell Oxide Nanoparticles. Microscopy and Microanalysis, 2014, 20, 106-107.	0.4	0
54	Anomalous Magnetic Properties of Nanoparticles Arising from Defect Structures: Topotaxial Oxidation of Fe _{1–<i>x</i>} 0 Fe _{3â^{~1}Î} O ₄ Core Shell Nanocubes to Single-Phase Particles. ACS Nano, 2013, 7, 7132-7144.	14.6	159

#	Article	IF	CITATIONS
55	Structural diversity in iron oxide nanoparticle assemblies as directed by particle morphology and orientation. Nanoscale, 2013, 5, 3969.	5.6	52
56	Correlating material-specific layers and magnetic distributions within onion-like Fe3O4/MnO/γ-Mn2O3 core/shell nanoparticles. Journal of Applied Physics, 2013, 113, 17B531.	2.5	20
57	Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nature Communications, 2013, 4, 2960.	12.8	160
58	Resolving Material-Specific Structures within Fe ₃ O ₄ γ-Mn ₂ O ₃ Core Shell Nanoparticles Using Anomalous Small-Angle X-ray Scattering. ACS Nano, 2013, 7, 921-931.	14.6	36
59	Preparation of dry ultra-porous cellulosic fibres: Characterization and possible initial uses. Carbohydrate Polymers, 2013, 92, 775-783.	10.2	31
60	Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials. Journal of Materials Chemistry A, 2013, 1, 5469.	10.3	58
61	2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals. Nanoscale, 2013, 5, 953-960.	5.6	43
62	Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and Technology of Advanced Materials, 2013, 14, 023001.	6.1	252
63	Quantitative spatial magnetization distribution in iron oxide nanocubes and nanospheres by polarized small-angle neutron scattering. New Journal of Physics, 2012, 14, 013025.	2.9	100
64	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	2.5	78
65	On the role of tannins and iron in the Bogolan or mud cloth dyeing process. Textile Reseach Journal, 2012, 82, 1888-1896.	2.2	11
66	High strength, flexible and transparent nanofibrillated cellulose–nanoclay biohybrid films with tunable oxygen and water vapor permeability. Nanoscale, 2012, 4, 6622.	5.6	224
67	Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3â^'xO4/FexMn3â^'xO4, core/shell heterostructured nanoparticles. Nanoscale, 2012, 4, 5138.	5.6	76
68	Distinguishing the core from the shell in MnOx/MnOy and FeOx/MnOx core/shell nanoparticles through quantitative electron energy loss spectroscopy (EELS) analysis. Micron, 2012, 43, 30-36.	2.2	36
69	Two-, Three-, and Four-Component Magnetic Multilayer Onion Nanoparticles Based on Iron Oxides and Manganese Oxides. Journal of the American Chemical Society, 2011, 133, 16738-16741.	13.7	55
70	Hamaker Constants of Iron Oxide Nanoparticles. Langmuir, 2011, 27, 8659-8664.	3.5	115
71	Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes. Nano Letters, 2011, 11, 1651-1656.	9.1	147
72	A transparent hybrid of nanocrystalline cellulose and amorphous calcium carbonate nanoparticles. Nanoscale, 2011, 3, 3563.	5.6	80

#	Article	IF	CITATIONS
73	Oriented supercrystals of anisotropic iron oxide nanoparticles. Acta Crystallographica Section A: Foundations and Advances, 2010, 66, s241-s241.	0.3	0
74	Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nature Nanotechnology, 2010, 5, 584-588.	31.5	753
75	Size-Dependent Passivation Shell and Magnetic Properties in Antiferromagnetic/Ferrimagnetic Core/Shell MnO Nanoparticles. Journal of the American Chemical Society, 2010, 132, 9398-9407.	13.7	106
76	Magnetic Proximity Effect Features in Antiferromagnetic/Ferrimagnetic Core-Shell Nanoparticles. Physical Review Letters, 2009, 102, 247201.	7.8	85
77	Direct evidence of imprinted vortex states in the antiferromagnet of exchange biased microdisks. Applied Physics Letters, 2009, 95, .	3.3	24
78	Bar-shaped nanoparticles of iron(II) hydroxide. Journal of Nanoparticle Research, 2008, 10, 377-381.	1.9	0
79	Cold Consolidation of Metal–Ceramic Nanocomposite Powders with Large Ceramic Fractions. Advanced Functional Materials, 2008, 18, 3293-3298.	14.9	31
80	Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy. Journal of the American Chemical Society, 2008, 130, 13234-13239.	13.7	226
81	Mesoporous silica–magnetite nanocomposite synthesized by using a neutral surfactant. Nanotechnology, 2008, 19, 185603.	2.6	46
82	Tailoring the magnetization reversal of elliptical dots using exchange bias (invited). Journal of Applied Physics, 2008, 103, 07C109.	2.5	12
83	Reversible post-synthesis tuning of the superparamagnetic blocking temperature of γ-Fe2O3nanoparticles by adsorption and desorption of Co(ii) ions. Journal of Materials Chemistry, 2007, 17, 322-328.	6.7	43
84	Enhanced Coercivity in Co-Rich Near-Stoichiometric CoxFe3-xO4+l̂´ Nanoparticles Prepared in Large Batches. Chemistry of Materials, 2007, 19, 4957-4963.	6.7	43
85	Synthesis and Size-Dependent Exchange Bias in Inverted Coreâ^'Shell MnO Mn3O4Nanoparticles. Journal of the American Chemical Society, 2007, 129, 9102-9108.	13.7	261
86	Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions. Journal of Nanoparticle Research, 2007, 9, 647-652.	1.9	19
87	Novel flow injection synthesis of iron oxide nanoparticles with narrow size distribution. Chemical Engineering Science, 2006, 61, 4625-4633.	3.8	206
88	Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. Journal of Colloid and Interface Science, 2006, 298, 501-507.	9.4	133
89	Imprinting Vortices into Antiferromagnets. Physical Review Letters, 2006, 97, 067201.	7.8	51
90	Controlling magnetic vortices through exchange bias. Applied Physics Letters, 2006, 88, 042502.	3.3	22

#	Article	IF	CITATIONS
91	Transport characterisation of a PIM system used for the extraction of Pb(II) using 2 as carrier. Journal of Membrane Science, 2005, 250, 247-257.	8.2	78
92	Synthesis, characterization and ESR measurements of CoNiO nanoparticles. Physica Status Solidi (B): Basic Research, 2005, 242, 1712-1718.	1.5	23
93	Controlled Synthesis of Near-Stoichiometric Cobalt Ferrite Nanoparticles. Chemistry of Materials, 2005, 17, 5109-5118.	6.7	90
94	Magnetite core-inorganic shell nanoparticles for biomedical applications by novel confined-zone synthesis. , 0, , .		0