Ting Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271344/publications.pdf

Version: 2024-02-01

52 4,145 30 papers citations h-index

54 54 54 6231 all docs docs citations times ranked citing authors

51

g-index

#	Article	IF	CITATIONS
1	Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Metals, 2022, 41, 830-835.	7.1	43
2	Modulation of Surface Oxygen Defects on ZnO/ZnS Catalysts to Promote Photocatalytic H $_{\rm c}$ Vsub> 2 $_{\rm c}$ Production. ChemistrySelect, 2022, 7, .	1.5	1
3	Fabrication of Zn-Cu-Ni Ternary Oxides in Nanoarrays for Photo-Enhanced Pseudocapacitive Charge Storage. Nanomaterials, 2022, 12, 2457.	4.1	1
4	Tailoring the Porous Structure of Monoâ€dispersed Hierarchically Nitrogenâ€doped Carbon Spheres for Highly Efficient Oxygen Reduction Reaction. Energy and Environmental Materials, 2021, 4, 81-87.	12.8	12
5	Inâ€situ Copper Doping with ZnO/ZnS Heterostructures to Promote Interfacial Photocatalysis of Microsized Particles. ChemCatChem, 2021, 13, 564-573.	3.7	16
6	Enriching surface oxygen vacancies of spinel Co ₃ O ₄ to boost H ₂ O adsorption for HER in alkaline media. Materials Advances, 2021, 2, 7054-7063.	5.4	9
7	Facile fabrication of hollow CuO nanocubes for enhanced lithium/sodium storage performance. CrystEngComm, 2021, 23, 6107-6116.	2.6	10
8	Fabrication of Coreâ€Shell Nanocolloids with Various Core Sizes to Promote Light Capture for Green Fuels. Chemistry - an Asian Journal, 2021, 16, 761-768.	3.3	4
9	Synergistic Interaction of Ternary Niâ^'Coâ^'Cu Chalcogenides Confined in Nanosheets Array to Advance Supercapacitors and Solar Steam Generation. Solar Rrl, 2021, 5, 2100021.	5.8	21
10	Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage. Small, 2021, 17, e2008047.	10.0	23
11	Unusual Formation of CoS _{0.61} Se _{0.25} Anion Solid Solution with Sulfur Defects to Promote Electrocatalytic Water Reduction. ACS Applied Energy Materials, 2021, 4, 2976-2982.	5.1	12
12	Electrochemical Energy Storage: Direct Utilization of Photoinduced Charge Carriers to Promote Electrochemical Energy Storage (Small 21/2021). Small, 2021, 17, 2170103.	10.0	0
13	Controllable Ag Migration To Form One-Dimensional Ag/Ag ₂ S@ZnS for Bifunctional Catalysis. ACS Applied Energy Materials, 2020, 3, 6146-6154.	5.1	18
14	Photoâ€assisted electrochemical hydrogen evolution by plasmonic Ag nanoparticle/nanorod heterogeneity. InformaÄnÃ-Materiály, 2019, 1, 417-425.	17.3	52
15	Photoacoustic imaging of tumor-targeted HSA-modified S-WS2 nanosheet probes. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	1
16	Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy, 2019, 60, 312-323.	16.0	154
17	<i>In situ</i> formation of Ni ₃ S ₂ â€"Cu _{1.8} S nanosheets to promote hybrid supercapacitor performance. Journal of Materials Chemistry A, 2019, 7, 11044-11052.	10.3	71
18	Facile fabrication of interconnected-mesoporous T-Nb2O5 nanofibers as anodes for lithium-ion batteries. Science China Materials, 2019, 62, 465-473.	6.3	31

#	Article	IF	CITATIONS
19	Uniform MnCo ₂ O ₄ Porous Dumbbells for Lithium-Ion Batteries and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 8730-8738.	8.0	83
20	Monodisperse and homogeneous SiO $\!\!\!/\!\!\!/ C$ microspheres: A promising high-capacity and durable anode material for lithium-ion batteries. Energy Storage Materials, 2018, 13, 112-118.	18.0	222
21	Self-templating synthesis of double-wall shelled vanadium oxide hollow microspheres for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2018, 6, 6792-6799.	10.3	30
22	One-dimensional coaxial Sb and carbon fibers with enhanced electrochemical performance for sodium-ion batteries. Applied Surface Science, 2018, 428, 448-454.	6.1	37
23	N-doped one-dimensional carbonaceous backbones supported MoSe2 nanosheets as superior electrodes for energy storage and conversion. Chemical Engineering Journal, 2018, 334, 2190-2200.	12.7	88
24	Three-Dimensional Carbon-Coated Treelike Ni ₃ S ₂ Superstructures on a Nickel Foam as Binder-Free Bifunctional Electrodes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36018-36027.	8.0	44
25	N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chemical Engineering Journal, 2018, 353, 606-614.	12.7	93
26	Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-lon Batteries. Frontiers in Chemistry, 2018, 6, 195.	3.6	34
27	Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Materials, 2017, 8, 28-34.	18.0	107
28	Bifunctional 2D-on-2D MoO ₃ nanobelt/Ni(OH) ₂ nanosheets for supercapacitor-driven electrochromic energy storage. Journal of Materials Chemistry A, 2017, 5, 8343-8351.	10.3	106
29	High-efficient electrocatalysts by unconventional acid-etching for overall water splitting. Journal of Materials Chemistry A, 2017, 5, 24153-24158.	10.3	26
30	Rational design of multi-shelled CoO/Co ₉ S ₈ hollow microspheres for high-performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 18448-18456.	10.3	91
31	Rational synthesis of SnS2@C hollow microspheres with superior stability for lithium-ion batteries. Science China Materials, 2017, 60, 955-962.	6.3	11
32	Facile synthesis of flower-like hierarchical NiCo ₂ O ₄ microspheres as high-performance cathode materials for Li–O ₂ batteries. RSC Advances, 2016, 6, 98867-98873.	3.6	15
33	In situ chemical etching of tunable 3D Ni ₃ S ₂ superstructures for bifunctional electrocatalysts for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 13916-13922.	10.3	117
34	Carbon supported Co9S8 hollow spheres assembled from ultrathin nanosheets for high-performance supercapacitors. Materials Letters, 2016, 183, 290-295.	2.6	24
35	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie, 2016, 128, 10482-10486.	2.0	30
36	Topotactic Consolidation of Monocrystalline CoZn Hydroxides for Advanced Oxygen Evolution Electrodes. Angewandte Chemie - International Edition, 2016, 55, 10326-10330.	13.8	43

#	Article	IF	CITATIONS
37	Rational Integration of Inbuilt Aperture with Mesoporous Framework in Unusual Asymmetrical Yolk–Shell Structures for Energy Storage and Conversion. ACS Applied Materials & Diterfaces, 2016, 8, 32901-32909.	8.0	20
38	Natureâ€Inspired Design of Artificial Solarâ€toâ€Fuel Conversion Systems based on Copper Phosphate Microflowers. ChemSusChem, 2016, 9, 1575-1578.	6.8	10
39	TiO2 Fibers Supported \hat{l}^2 -FeOOH Nanostructures as Efficient Visible Light Photocatalyst and Room Temperature Sensor. Scientific Reports, 2015, 5, 10601.	3.3	73
40	Self-assembly formation of NiCo ₂ O ₄ superstructures with porous architectures for electrochemical capacitors. RSC Advances, 2015, 5, 53259-53266.	3.6	17
41	Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy, 2015, 18, 273-282.	16.0	53
42	Shaped-controlled synthesis of porous NiCo ₂ O ₄ with 1-3 dimensional hierarchical nanostructures for high-performance supercapacitors. RSC Advances, 2015, 5, 1697-1704.	3.6	41
43	Outsideâ€In Recrystallization of ZnS–Cu _{1.8} S Hollow Spheres with Interdispersed Lattices for Enhanced Visible Light Solar Hydrogen Generation. Chemistry - A European Journal, 2014, 20, 11505-11510.	3.3	25
44	Formation of 1D Hierarchical Structures Composed of Ni ₃ S ₂ Nanosheets on CNTs Backbone for Supercapacitors and Photocatalytic H ₂ Production. Advanced Energy Materials, 2012, 2, 1497-1502.	19.5	321
45	Porous Co3O4 nanowires derived from long Co(CO3)0.5(OH) \hat{A} -0.11H2O nanowires with improved supercapacitive properties. Nanoscale, 2012, 4, 2145.	5.6	251
46	Facile preparation of ZnMn ₂ O ₄ hollow microspheres as high-capacity anodes for lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 827-829.	6.7	236
47	Arrays of ultrafine CuS nanoneedles supported on a CNT backbone for application in supercapacitors. Journal of Materials Chemistry, 2012, 22, 7851.	6.7	253
48	Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale, 2011, 3, 1084-1089.	5.6	352
49	Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 6602.	6.7	280
50	Shape-Controlled Synthesis of Cobalt-based Nanocubes, Nanodiscs, and Nanoflowers and Their Comparative Lithium-Storage Properties. ACS Applied Materials & Samp; Interfaces, 2010, 2, 3628-3635.	8.0	177
51	Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. Journal of Materials Chemistry, 2010, 20, 7015.	6.7	341
52	Two Better Compatible and Complementary Light Absorption Polymer Donors Contributing Synergistically to High Efficiency and Better Thermally Stable Ternary Organic Solar Cells. ACS Applied Energy Materials, 0, , .	5.1	7