
Richard Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2713393/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14688-14693.	7.1	355
2	Positively Selected <i>G6PD</i> -Mahidol Mutation Reduces <i>Plasmodium vivax</i> Density in Southeast Asians. Science, 2009, 326, 1546-1549.	12.6	150
3	Epidemiological Risk Factors Associated with High Global Frequency of Inapparent Dengue Virus Infections. Frontiers in Immunology, 2014, 5, 280.	4.8	144
4	An open challenge to advance probabilistic forecasting for dengue epidemics. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24268-24274.	7.1	136
5	The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density. Nature Communications, 2019, 10, 1433.	12.8	121
6	Determinants of Arbovirus Vertical Transmission in Mosquitoes. PLoS Pathogens, 2016, 12, e1005548.	4.7	98
7	Urban climate versus global climate change—what makes the difference for dengue?. Annals of the New York Academy of Sciences, 2016, 1382, 56-72.	3.8	76
8	The Spread of Dengue in an Endemic Urban Milieu–The Case of Delhi, India. PLoS ONE, 2016, 11, e0146539.	2.5	59
9	Genetic Determination and Linkage Mapping of Plasmodium falciparum Malaria Related Traits in Senegal. PLoS ONE, 2008, 3, e2000.	2.5	49
10	Quantifying the added value of climate information in a spatio-temporal dengue model. Stochastic Environmental Research and Risk Assessment, 2016, 30, 2067-2078.	4.0	44
11	Dynamical malaria models reveal how immunity buffers effect of climate variability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8786-8791.	7.1	42
12	Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180826.	2.6	38
13	Social and environmental risk factors for dengue in Delhi city: A retrospective study. PLoS Neglected Tropical Diseases, 2021, 15, e0009024.	3.0	34
14	Structure in the variability of the basic reproductive number (R0) for Zika epidemics in the Pacific islands. ELife, 2016, 5, .	6.0	33
15	An epidemiological study of dengue in Delhi, India. Acta Tropica, 2016, 153, 21-27.	2.0	29
16	Impact of Mosquito Bites on Asexual Parasite Density and Gametocyte Prevalence in Asymptomatic Chronic Plasmodium falciparum Infections and Correlation with IgE and IgG Titers. Infection and Immunity, 2012, 80, 2240-2246.	2.2	25
17	Ecological, Social, and Other Environmental Determinants of Dengue Vector Abundance in Urban and Rural Areas of Northeastern Thailand. International Journal of Environmental Research and Public Health, 2021, 18, 5971.	2.6	25
18	Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change. International Journal of Environmental Research and Public Health, 2021, 18, 5035.	2.6	23

RICHARD PAUL

#	Article	IF	CITATIONS
19	Knowledge, attitudes, and practices on climate change and dengue in Lao People's Democratic Republic and Thailand. Environmental Research, 2021, 193, 110509.	7.5	22
20	Asymptomatic Dengue Virus Infections, Cambodia, 2012–2013. Emerging Infectious Diseases, 2019, 25, 1354-1362.	4.3	21
21	Dengue viremia kinetics in asymptomatic and symptomatic infection. International Journal of Infectious Diseases, 2020, 101, 90-97.	3.3	21
22	Risk factors associated with asthma, atopic dermatitis and rhinoconjunctivitis in a rural Senegalese cohort. Allergy, Asthma and Clinical Immunology, 2015, 11, 24.	2.0	17
23	First dengue virus seroprevalence study on Madeira Island after the 2012 outbreak indicates unreported dengue circulation. Parasites and Vectors, 2019, 12, 103.	2.5	17
24	Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Neglected Tropical Diseases, 2018, 12, e0006202.	3.0	17
25	Global Vector Control Guidelines – The Need For Co-Creation. Trends in Parasitology, 2019, 35, 267-270.	3.3	15
26	Mapping the spatial distribution of the dengue vector Aedes aegypti and predicting its abundance in northeastern Thailand using machine-learning approach. One Health, 2021, 13, 100358.	3.4	15
27	Risk Factors for Plasmodium falciparum Gametocyte Positivity in a Longitudinal Cohort. PLoS ONE, 2015, 10, e0123102.	2.5	14
28	Heritability of P. falciparum and P. vivax Malaria in a Karen Population in Thailand. PLoS ONE, 2008, 3, e3887.	2.5	13
29	Asthma and atopic dermatitis are associated with increased risk of clinical <i>Plasmodium falciparum</i> malaria. BMJ Open, 2013, 3, e002835.	1.9	13
30	The genetic control of immunity to Plasmodium infection. BMC Immunology, 2015, 16, 14.	2.2	12
31	Dengue Seroprevalence and Seroconversion in Urban and Rural Populations in Northeastern Thailand and Southern Laos. International Journal of Environmental Research and Public Health, 2020, 17, 9134.	2.6	12
32	Differential contribution of Anopheles coustani and Anopheles arabiensis to the transmission of Plasmodium falciparum and Plasmodium vivax in two neighbouring villages of Madagascar. Parasites and Vectors, 2020, 13, 430.	2.5	11
33	Dengue modeling in rural Cambodia: Statistical performance versus epidemiological relevance. Epidemics, 2019, 26, 43-57.	3.0	10
34	High Number of Previous Plasmodium falciparum Clinical Episodes Increases Risk of Future Episodes in a Sub-Group of Individuals. PLoS ONE, 2013, 8, e55666.	2.5	10
35	Mosquito control might not bolster imperfect dengue vaccines. Lancet, The, 2014, 384, 1747-1748.	13.7	9
36	Long-term persistence of monotypic dengue transmission in small size isolated populations, French Polynesia, 1978-2014. PLoS Neglected Tropical Diseases, 2020, 14, e0008110.	3.0	9

RICHARD PAUL

#	Article	IF	CITATIONS
37	Genome wide association study of HTLV-1–associated myelopathy/tropical spastic paraparesis in the Japanese population. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
38	An Exhaustive, Non-Euclidean, Non-Parametric Data Mining Tool for Unraveling the Complexity of Biological Systems – Novel Insights into Malaria. PLoS ONE, 2011, 6, e24085.	2.5	9
39	Efficacy of the In2Care® auto-dissemination device for reducing dengue transmission: study protocol for a parallel, two-armed cluster randomised trial in the Philippines. Trials, 2019, 20, 269.	1.6	8
40	Assessment of Urban Land Surface Temperature and Vertical City Associated with Dengue Incidences. Remote Sensing, 2020, 12, 3802.	4.0	8
41	Development and Comparison of Dengue Vulnerability Indices Using GIS-Based Multi-Criteria Decision Analysis in Lao PDR and Thailand. International Journal of Environmental Research and Public Health, 2021, 18, 9421.	2.6	7
42	La dengue, maladie complexe. Natures Sciences Societes, 2015, 23, 331-342.	0.4	6
43	Viral transmissibility of SARS-CoV-2 accelerates in the winter, similarly to influenza epidemics. American Journal of Infection Control, 2022, 50, 1070-1076.	2.3	6
44	The When and the Where of Zika Epidemic Potential in Europe – An Evidence Base for Public Health Preparedness. EBioMedicine, 2016, 9, 17-18.	6.1	4
45	Assessing Entomological and Epidemiological Efficacy of Pyriproxyfen-Treated Ovitraps in the Reduction of Aedes Species: A Quasi-Experiment on Dengue Infection Using Saliva Samples. International Journal of Environmental Research and Public Health, 2022, 19, 3026.	2.6	4
46	Impact of Changing Drug Treatment and Malaria Endemicity on the Heritability of Malaria Phenotypes in a Longitudinal Family-Based Cohort Study. PLoS ONE, 2011, 6, e26364.	2.5	2
47	Filter-free exhaustive odds ratio-based genome-wide interaction approach pinpoints evidence for interaction in the HLA region in psoriasis. BMC Genetics, 2015, 16, 11.	2.7	2
48	Antimalarial resistance: is vivax left behind?. Lancet Infectious Diseases, The, 2014, 14, 908-909.	9.1	1
49	Exploring the association between glucose-6-phosphate dehydrogenase deficiency and color blindness in Southeast Asia. Asian Biomedicine, 2018, 11, 365-370.	0.3	1
50	"We Tried to Borrow Money, but No One Helped.―Assessing the Three-Delay Model Factors Affecting the Healthcare Service Delivery among Dengue Patients during COVID-19 Surge in a Public Tertiary Hospital: A Convergent Parallel Mixed Methods Study. International Journal of Environmental Research and Public Health, 2021, 18, 11851.	2.6	1
51	Integrating Social Sciences to Mitigate Against Covid. Economics, Law, and Institutions in Asia Pacific, 2022, , 47-71.	0.6	0
52	Potential Transmission of Dengue Virus in Japan. Economics, Law, and Institutions in Asia Pacific, 2022, , 259-274.	0.6	0