
Hyejung Mok

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2713360/publications.pdf Version: 2024-02-01

HVELLING MOK

#	Article	IF	CITATIONS
1	Exosome-mediated delivery of transforming growth factor-β receptor 1 kinase inhibitors and toll-like receptor 7/8 agonists for combination therapy of tumors. Acta Biomaterialia, 2022, 141, 354-363.	8.3	17
2	Chronic <scp>infraredâ€A</scp> irradiationâ€induced photoaging of human dermal fibroblasts from different donors at physiological temperature. Photodermatology Photoimmunology and Photomedicine, 2022, 38, 571-581.	1.5	1
3	Formulation of Glycyrrhizic Acid-based Nanocomplexes for Enhanced Anti-cancer and Anti-inflammatory Effects of Curcumin. Biotechnology and Bioprocess Engineering, 2022, 27, 163-170.	2.6	8
4	Cancerâ€Cellâ€Derived Hybrid Vesicles from MCFâ€7 and HeLa Cells for Dualâ€Homotypic Targeting of Anticancer Drugs. Macromolecular Bioscience, 2021, 21, 2100067.	4.1	3
5	Evaluation of Lipid-polyethylenimine Conjugates as Biocompatible Carriers of CpG Oligodeoxynucleotides to Macrophages. Biotechnology and Bioprocess Engineering, 2021, 26, 586-594.	2.6	1
6	Protective Effects of Titanium Dioxide-based Emulsion after Short-term and Long-term Infrared-A Ray Irradiation on Skin Cells. Biotechnology and Bioprocess Engineering, 2021, 26, 595-605.	2.6	5
7	Role of ginseng in the neurovascular unit of neuroinflammatory diseases focused on the blood-brain barrier. Journal of Ginseng Research, 2021, 45, 599-609.	5.7	11
8	Exosome-modified PLGA Microspheres for Improved Internalization into Dendritic Cells and Macrophages. Biotechnology and Bioprocess Engineering, 2020, 25, 521-527.	2.6	11
9	Activated Plateletâ€Derived Vesicles for Efficient Hemostatic Activity. Macromolecular Bioscience, 2020, 20, 1900338.	4.1	9
10	Citraconylated exosomes for improved internalization into macrophages. Applied Biological Chemistry, 2019, 62, .	1.9	11
11	Platelet-derived nanovesicles for hemostasis without release of pro-inflammatory cytokines. Biomaterials Science, 2019, 7, 856-859.	5.4	21
12	Enhanced intracellular uptake and stability of umbelliferone in compound mixtures from Angelica gigas inÂvitro. Journal of Pharmacological Sciences, 2019, 140, 8-13.	2.5	7
13	Byakangelicin as a modulator for improved distribution and bioactivity of natural compounds and synthetic drugs in the brain. Phytomedicine, 2019, 62, 152963.	5.3	6
14	Mannoseâ€Modified Serum Exosomes for the Elevated Uptake to Murine Dendritic Cells and Lymphatic Accumulation. Macromolecular Bioscience, 2019, 19, e1900042.	4.1	70
15	PLGA Microspheres Coated with Cancer Cell-Derived Vesicles for Improved Internalization into Antigen-Presenting Cells and Immune Stimulation. Bioconjugate Chemistry, 2019, 30, 1690-1701.	3.6	14
16	Analysis of the biodistribution of natural products in mice by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Applied Biological Chemistry, 2018, 61, 251-255.	1.9	2
17	Efficient Enrichment and Analysis of Vicinal-Diol-Containing Flavonoid Molecules Using Boronic-Acid-Functionalized Particles and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2018, 66, 4741-4747.	5.2	5
18	CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells. RSC Advances, 2018, 8, 6608-6615.	3.6	19

Нуејинд Мок

#	Article	IF	CITATIONS
19	Comparative evaluation of cell- and serum-derived exosomes to deliver immune stimulators to lymph nodes. Biomaterials, 2018, 162, 71-81.	11.4	37
20	Curcumin-Incorporated Polymeric Scaffolds and Their Potential for the Detection of Radical Molecules. Macromolecular Research, 2018, 26, 145-150.	2.4	0
21	Enzymatically Produced miR34a Nanoparticles for Enhanced Antiproliferation Activity. Advanced Biology, 2018, 2, 1700158.	3.0	6
22	Implication of multivalent aptamers in DNA and DNA–RNA hybrid structures for efficient drug delivery in vitro and in vivo. Journal of Industrial and Engineering Chemistry, 2018, 60, 250-258.	5.8	9
23	Efficient Delivery of Tyrosinase Related Proteinâ€2 (TRP2) Peptides to Lymph Nodes using Serumâ€Derived Exosomes. Macromolecular Bioscience, 2018, 18, e1800301.	4.1	30
24	l-motif-coated exosomes as a pH-sensitive carrier for anticancer drugs. Applied Biological Chemistry, 2018, 61, 599-606.	1.9	23
25	Effects of curcumin-/boron-based compound complexation on antioxidant and antiproliferation activity. Applied Biological Chemistry, 2018, 61, 403-408.	1.9	6
26	Evaluation of the Enhanced Antioxidant Activity of Curcumin within Exosomes by Fluorescence Monitoring. Biotechnology and Bioprocess Engineering, 2018, 23, 150-157.	2.6	17
27	Cleavable conjugation of CpG oligodeoxynucleotides onto microparticles for facile release and cytokine induction in macrophages. Applied Biological Chemistry, 2017, 60, 321-326.	1.9	6
28	Amphiphilic siRNA Conjugates for Co-Delivery of Nucleic Acids and Hydrophobic Drugs. Bioconjugate Chemistry, 2017, 28, 2051-2061.	3.6	17
29	Multivalent Aptamer–RNA Conjugates for Simple and Efficient Delivery of Doxorubicin/siRNA into Multidrugâ€Resistant Cells. Macromolecular Bioscience, 2017, 17, 1600343.	4.1	42
30	Recent studies on micro-/nano-sized biomaterials for cancer immunotherapy. Journal of Pharmaceutical Investigation, 2017, 47, 11-18.	5.3	31
31	Mixed Micelles for Targeted and Efficient Doxorubicin Delivery to Multidrugâ€Resistant Breast Cancer Cells. Macromolecular Bioscience, 2016, 16, 748-758.	4.1	17
32	Complementary analysis of curcumin biodistribution using optical fluorescence imaging and mass spectrometry. Applied Biological Chemistry, 2016, 59, 291-295.	1.9	8
33	Polydopamine-Coated Porous Microspheres Conjugated with Immune Stimulators for Enhanced Cytokine Induction in Macrophages. Macromolecular Bioscience, 2016, 16, 1562-1569.	4.1	13
34	Complexation of curcumin with 2-aminoethyl diphenyl borate and implications for spatiotemporal fluorescence monitoring. International Journal of Pharmaceutics, 2016, 515, 669-676.	5.2	17
35	CpG oligonucleotide and α-d-mannose conjugate for efficient delivery into macrophages. Applied Biological Chemistry, 2016, 59, 759-763.	1.9	6
36	Indocyanine green-incorporated exosomes for improved in vivo imaging of sentinel lymph node. Applied Biological Chemistry, 2016, 59, 71-76.	1.9	10

Нуејинд Мок

#	Article	IF	CITATIONS
37	Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Advanced Drug Delivery Reviews, 2016, 104, 78-92.	13.7	72
38	Submicron-sized hydrogels incorporating cyclic dinucleotides for selective delivery and elevated cytokine release in macrophages. Acta Biomaterialia, 2016, 29, 271-281.	8.3	39
39	Enhanced Cytoplasmic Delivery of RAGE siRNA Using Bioreducible Polyethylenimineâ€based Nanocarriers for Myocardial Gene Therapy. Macromolecular Bioscience, 2015, 15, 1755-1763.	4.1	8
40	Long chain microRNA conjugates in calcium phosphate nanoparticles for efficient formulation and delivery. Archives of Pharmacal Research, 2015, 38, 705-715.	6.3	20
41	Multivalent aptamer–RNA based fluorescent probes for carrier-free detection of cellular microRNA-34a in mucin1-expressing cancer cells. Chemical Communications, 2015, 51, 9038-9041.	4.1	18
42	Linear polyethyleneimine-doxorubicin conjugate for pH-responsive synchronous delivery of drug and microRNA-34a. Macromolecular Research, 2015, 23, 449-456.	2.4	7
43	RAGE siRNA-mediated gene silencing provides cardioprotection against ventricular arrhythmias in acute ischemia and reperfusion. Journal of Controlled Release, 2015, 217, 315-326.	9.9	20
44	Evaluation of multimeric siRNA conjugates for efficient protamine-based delivery into breast cancer cells. Archives of Pharmacal Research, 2015, 38, 129-136.	6.3	16
45	Crossâ€linked Iron Oxide Nanoparticles for Therapeutic Engineering and in Vivo Monitoring of Mesenchymal Stem Cells in Cerebral Ischemia Model. Macromolecular Bioscience, 2014, 14, 380-389.	4.1	11
46	Small Interfering <scp>RNA</scp> Nunchucks with a Hydrophobic Linker for Efficient Intracellular Delivery. Macromolecular Bioscience, 2014, 14, 195-201.	4.1	5
47	MSC-based VEGF gene therapy in rat myocardial infarction model using facial amphipathic bile acid-conjugated polyethyleneimine. Biomaterials, 2014, 35, 1744-1754.	11.4	73
48	Multivalent comb-type aptamer–siRNA conjugates for efficient and selective intracellular delivery. Chemical Communications, 2014, 50, 6765.	4.1	46
49	Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction. Biomaterials, 2014, 35, 7562-7573.	11.4	38
50	Shellâ€Crosslinked Hyaluronic Acid Nanogels for Live Monitoring of Hyaluronidase Activity In Vivo. Macromolecular Bioscience, 2014, 14, 881-888.	4.1	15
51	Dual-responsive crosslinked pluronic micelles as a carrier to deliver anticancer drug taxol. Macromolecular Research, 2013, 21, 92-99.	2.4	19
52	Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics. Expert Opinion on Drug Delivery, 2013, 10, 73-87.	5.0	115
53	Reductively Dissociable siRNAâ€Polymer Hybrid Nanogels for Efficient Targeted Gene Silencing. Advanced Functional Materials, 2013, 23, 316-322.	14.9	44
54	Small-Interfering RNA (siRNA)-Based Functional Micro- and Nanostructures for Efficient and Selective Gene Silencing. Accounts of Chemical Research, 2012, 45, 1014-1025.	15.6	57

Hyejung Mok

#	Article	IF	CITATIONS
55	Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes. Chemical Communications, 2012, 48, 8628.	4.1	88
56	Gene Silencing by siRNA Microhydrogels via Polymeric Nanoscale Condensation. Journal of the American Chemical Society, 2011, 133, 13914-13917.	13.7	55
57	Self-assembled siRNA–PLGA conjugate micelles for gene silencing. Journal of Controlled Release, 2011, 152, 152-158.	9.9	96
58	Di―and Triblock siRNAâ€PEG Copolymers: PEG Density Effect of Polyelectrolyte Complexes on Cellular Uptake and Gene Silencing Efficiency. Macromolecular Bioscience, 2011, 11, 410-418.	4.1	17
59	Dual gene targeted multimeric siRNA for combinatorial gene silencing. Biomaterials, 2011, 32, 2359-2368.	11.4	30
60	Multifunctional siRNA delivery system: Polyelectrolyte complex micelles of sixâ€arm PEG conjugate of siRNA and cell penetrating peptide with crosslinked fusogenic peptide. Biotechnology Progress, 2010, 26, 57-63.	2.6	53
61	Gene silencing efficiency of siRNA-PEG conjugates: Effect of PEGylation site and PEG molecular weight. Journal of Controlled Release, 2010, 144, 306-313.	9.9	69
62	Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing. Nature Materials, 2010, 9, 272-278.	27.5	227
63	pH-Sensitive siRNA Nanovector for Targeted Gene Silencing and Cytotoxic Effect in Cancer Cells. Molecular Pharmaceutics, 2010, 7, 1930-1939.	4.6	116
64	Functional Polymers for Targeted Delivery of Nucleic Acid Drugs. Macromolecular Bioscience, 2009, 9, 731-743.	4.1	37
65	siRNA Conjugate Delivery Systems. Bioconjugate Chemistry, 2009, 20, 5-14.	3.6	300
66	Self•rosslinked and reducible fusogenic peptides for intracellular delivery of siRNA. Biopolymers, 2008, 89, 881-888.	2.4	86
67	Dissolution of biomacromolecules in organic solvents by nano-complexing with poly(ethylene) Tj ETQq1 1 0.784	314 rgBT 5.2	/Overlock 10 16
68	Direct plasmid DNA encapsulation within PLGA nanospheres by single oil-in-water emulsion method. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 105-111.	4.3	40
69	Enhanced Intracellular Delivery of Quantum Dot and Adenovirus Nanoparticles Triggered by Acidic pH via Surface Charge Reversal. Bioconjugate Chemistry, 2008, 19, 797-801.	3.6	107
70	Target-specific intracellular delivery of siRNA using degradable hyaluronic acid nanogels. Journal of Controlled Release, 2007, 119, 245-252.	9.9	337
71	Microencapsulation of PEGylated Adenovirus within PLGA Microspheres for Enhanced Stability and Gene Transfection Efficiency. Pharmaceutical Research, 2007, 24, 2263-2269.	3.5	38