Jiun-Tai Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2712075/publications.pdf

Version: 2024-02-01

236925 206112 2,767 127 25 48 citations h-index g-index papers 132 132 132 2989 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced mobility of confined polymers. Nature Materials, 2007, 6, 961-965.	27. 5	289
2	Wetting Transition in Cylindrical Alumina Nanopores with Polymer Melts. Nano Letters, 2006, 6, 1075-1079.	9.1	216
3	Conjugated polymer nanostructures for organic solar cell applications. Polymer Chemistry, 2011, 2, 2707.	3.9	191
4	Cylindrically Confined Diblock Copolymers. Macromolecules, 2009, 42, 9082-9088.	4.8	173
5	Instabilities in Nanoporous Media. Nano Letters, 2007, 7, 183-187.	9.1	121
6	Highly Ordered Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide). Advanced Materials, 2007, 19, 1571-1576.	21.0	119
7	Amorphous Carbon Nanotubes with Tunable Properties via Template Wetting. Advanced Functional Materials, 2006, 16, 1476-1480.	14.9	97
8	Synthesis and Thermal and Photoluminescence Properties of Liquid Crystalline Polyacetylenes Containing 4-Alkanyloxyphenyltrans-4-Alkylcyclohexanoate Side Groups. Macromolecules, 2002, 35, 1180-1189.	4.8	69
9	Solventâ€Annealingâ€Induced Nanowetting in Templates: Towards Tailored Polymer Nanostructures. Macromolecular Rapid Communications, 2013, 34, 348-354.	3.9	63
10	A Simple Route for the Preparation of Mesoporous Nanostructures Using Block Copolymers. ACS Nano, 2009, 3, 2827-2833.	14.6	54
11	Thin Film Instabilities in Blends under Cylindrical Confinement. Macromolecular Rapid Communications, 2009, 30, 377-383.	3.9	50
12	Effect of Nonsolvent on the Formation of Polymer Nanomaterials in the Nanopores of Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2012, 33, 1381-1387.	3.9	47
13	Fabrication of Polymer Nanopeapods in the Nanopores of Anodic Aluminum Oxide Templates Using a Double-Solution Wetting Method. Macromolecules, 2014, 47, 5227-5235.	4.8	47
14	Fabrication of WO3 electrochromic devices using electro-exploding wire techniques and spray coating. Solar Energy Materials and Solar Cells, 2021, 223, 110960.	6.2	45
15	Hierarchical Structures by Wetting Porous Templates with Electrospun Polymer Fibers. ACS Macro Letters, 2012, 1, 41-46.	4.8	41
16	Fabrication of Hierarchical Structures by Wetting Porous Templates with Polymer Microspheres. Langmuir, 2009, 25, 4331-4335.	3.5	38
17	Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polymer Chemistry, 2017, 8, 2309-2316.	3.9	35
18	Templated nanostructured PSâ€∢i>bâ€PEO nanotubes. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 2912-2917.	2.1	33

#	Article	IF	CITATIONS
19	Rayleigh-Instability-Driven Morphology Transformation by Thermally Annealing Electrospun Polymer Fibers on Substrates. Macromolecules, 2012, 45, 5816-5822.	4.8	33
20	Transformation of Polymer Nanofibers to Nanospheres Driven by the Rayleigh Instability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 3134-3142.	8.0	33
21	Threeâ€Dimensional Block Copolymer Nanostructures by the Solventâ€Annealingâ€Induced Wetting in Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2014, 35, 1598-1605.	3.9	31
22	Microwave-annealing-induced nanowetting: a rapid and facile method for fabrication of one-dimensional polymer nanomaterials. RSC Advances, 2015, 5, 27443-27448.	3.6	31
23	Annealing Effect on Electrospun Polymer Fibers and Their Transformation into Polymer Microspheres. Macromolecular Rapid Communications, 2012, 33, 343-349.	3.9	30
24	Effect of Thermal Annealing on the Surface Properties of Electrospun Polymer Fibers. Macromolecular Rapid Communications, 2014, 35, 360-366.	3.9	29
25	Rayleigh Instability in Polymer Thin Films Coated in the Nanopores of Anodic Aluminum Oxide Templates. Langmuir, 2014, 30, 387-393.	3.5	28
26	Effects of Thermal Annealing and Solvent Annealing on the Morphologies and Properties of Poly(3â€hexylthiophene) Nanowires. Macromolecular Chemistry and Physics, 2015, 216, 59-68.	2.2	25
27	Porous Polymer Nanostructures Fabricated by the Surface-Induced Phase Separation of Polymer Solutions in Anodic Aluminum Oxide Templates. Langmuir, 2013, 29, 9972-9978.	3.5	23
28	Curved polymer nanodiscs by wetting nanopores of anodic aluminum oxide templates with polymer nanospheres. Nanoscale, 2014, 6, 1340-1346.	5.6	23
29	Exploring Ternary Organic Solar Cells for the Improved Efficiency of 16.5% with the Compatible Nonacyclic Carbazole-Based Nonfullerene Acceptors as the Third Component. ACS Applied Energy Materials, 2021, 4, 2847-2855.	5.1	23
30	Fabrication of Core–Shell Polymer Nanospheres in the Nanopores of Anodic Aluminum Oxide Templates Using Polymer Blend Solutions. ACS Macro Letters, 2015, 4, 717-720.	4.8	21
31	Blending Homopolymers for Controlling the Morphology Transitions of Block Copolymer Nanorods Confined in Cylindrical Nanopores. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21010-21016.	8.0	21
32	Hybridization of CMRP and ATRP: A Direct Living Chain Extension from Poly(vinyl acetate) to Poly(methyl methacrylate) and Polystyrene. Macromolecules, 2015, 48, 6832-6838.	4.8	20
33	Electrogenerated Chemiluminescence of Soliton Waves in Conjugated Polymers. Journal of the American Chemical Society, 2009, 131, 14166-14167.	13.7	19
34	Green-Solvent-Processable Organic Photovoltaics with High Performances Enabled by Asymmetric Non-Fullerene Acceptors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59043-59050.	8.0	19
35	Synthesis and characterisation of liquid crystal molecules based on thieno [3,2-b] thiophene and their application in organic field-effect transistors. Liquid Crystals, 2017, 44, 557-565.	2.2	18
36	New soluble poly(2,3-diphenylphenylene vinylene) derivatives for light-emitting diodes. Thin Solid Films, 2005, 477, 73-80.	1.8	17

#	Article	IF	CITATIONS
37	Electrogenerated Chemiluminescence of Conjugated Polymer Films from Patterned Electrodes. Journal of the American Chemical Society, 2011, 133, 11994-12000.	13.7	17
38	Light-Induced Nanowetting: Erasable and Rewritable Polymer Nanoarrays via Solid-to-Liquid Transitions. Nano Letters, 2020, 20, 5853-5859.	9.1	17
39	Poly(2,3-diphenyl-1,4-phenylenevinylene) (DP-PPV) derivatives: Synthesis, properties, and their applications in polymer light-emitting diodes. Polymer, 2013, 54, 4045-4058.	3.8	14
40	Elucidating End-Group Modifications of Carbazole-Based Nonfullerene Acceptors in Indoor Applications for Achieving a PCE of over 20%. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26247-26255.	8.0	14
41	Wetting in nanopores of cylindrical anodic aluminum oxide templates: Production of gradient polymer nanorod arrays on large-area curved surfaces. European Polymer Journal, 2015, 63, 141-148.	5.4	13
42	Solvent-Induced Dewetting on Curved Substrates: Fabrication of Porous Polymer Nanotubes by Anodic Aluminum Oxide Templates. Macromolecules, 2015, 48, 6241-6250.	4.8	12
43	Effect of the Polymer Concentration on the Rayleigh-Instability-Type Transformation in Polymer Thin Films Coated in the Nanopores of Anodic Aluminum Oxide Templates. Langmuir, 2015, 31, 2569-2575.	3.5	12
44	Morphology control of three-dimensional nanostructures in porous templates using lamella-forming block copolymers and solvent vapors. Soft Matter, 2016, 12, 8087-8092.	2.7	12
45	Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing. Langmuir, 2016, 32, 2110-2116.	3.5	12
46	Plateauâ€"Rayleigh Instability Morphology Evolution (PRIME): From Electrospun Coreâ€"Shell Polymer Fibers to Polymer Microbowls. Macromolecular Rapid Communications, 2017, 38, 1600689.	3.9	12
47	Intelligent Environmental Sensing: Fabrication of Switchable, Reusable, and Highly Sensitive Gas Sensors with Spiropyran-Grafted Anodic Aluminum Oxide Templates. Journal of Physical Chemistry C, 2020, 124, 11870-11876.	3.1	12
48	The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers. Pharmaceutics, 2020, 12, 139.	4.5	12
49	Rayleigh-instability-driven morphology transformation of electrospun polymer fibers imaged by in situ optical microscopy and stimulated Raman scattering microscopy. RSC Advances, 2014, 4, 51884-51892.	3.6	11
50	Asymmetric Polymer Particles with Anisotropic Curvatures by Annealing Polystyrene Microspheres on Poly(vinyl alcohol) Films. Macromolecular Rapid Communications, 2016, 37, 1825-1831.	3.9	11
51	Thermal-Annealing-Induced Self-Stretching: Fabrication of Anisotropic Polymer Particles on Polymer Films. Langmuir, 2017, 33, 12300-12305.	3.5	11
52	Multifunctional nanoparticles with controllable dimensions and tripled orthogonal reactivity. Nanoscale, 2017, 9, 14787-14791.	5.6	11
53	From Electrospun Polymer Core–Shell Fibers to Polymer Hemispheres and Spheres: Two Types of Transformation Processes and Tearing Films with Linearly Arranged Cavities. Macromolecules, 2017, 50, 9024-9031.	4.8	11
54	Microwave-annealing-induced nanowetting of block copolymers in cylindrical nanopores. Soft Matter, 2018, 14, 35-41.	2.7	11

#	Article	IF	CITATIONS
55	Alignmentâ€Improved and Diameterâ€Reduced Electrospun Polymer Fibers via the Hotâ€6tretching Process. Macromolecular Materials and Engineering, 2020, 305, 1900637.	3.6	11
56	Reconsidering terms for mechanisms of polymer growth: the "step-growth―and "chain-growth― dilemma. Polymer Chemistry, 2022, 13, 2262-2270.	3.9	11
57	Synthesis of cyclopentyloxy terphenyl liquid crystals with negative dielectric anisotropy. Liquid Crystals, 2015, 42, 104-112.	2.2	10
58	Solvent On-Film Annealing (SOFA): Morphological Evolution of Polymer Particles on Polymer Films via Solvent Vapor Annealing. Macromolecules, 2017, 50, 5114-5121.	4.8	10
59	Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells. ACS Applied Materials & Diterfaces, 2017, 9, 33212-33219.	8.0	10
60	Solvent-Induced Shape Recovery of Anisotropic Polymer Particles Prepared by a Modified Thermal Stretching Method. Langmuir, 2018, 34, 8326-8332.	3.5	10
61	Recent advances of carbazoleâ€based nonfullerene acceptors: Molecular design, optoelectronic properties, and photovoltaic performance in organic solar cells. Journal of the Chinese Chemical Society, 2021, 68, 1186-1196.	1.4	10
62	The synthesis of anthradithiophene-based liquid crystals and their applications in organic thin film transistors. Journal of Materials Chemistry C, 2016, 4, 2284-2288.	5.5	9
63	Interplay of Template Constraints and Microphase Separation in Polymeric Nano-Objects Replicated from Novel Modulated and Interconnected Nanoporous Anodic Alumina. ACS Applied Nano Materials, 2018, 1, 200-208.	5.0	9
64	Hierarchical Polymer Structures Using Templates and the Modified Breath Figure Method. Langmuir, 2018, 34, 7472-7478.	3.5	9
65	Asymmetries in Porous Membranes: Fabrication of Anodic Aluminum Oxide Membranes with Double-Sized Nanopores and Controlled Surface Properties. Journal of Physical Chemistry C, 2019, 123, 14540-14546.	3.1	9
66	Fabrication of Multicomponent Polymer Nanostructures Containing PMMA Shells and Encapsulated PS Nanospheres in the Nanopores of Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2015, 36, 439-446.	3.9	8
67	Confinement Effects on the Optical Properties and Chain Conformations of Poly(9,9â€diâ€∢i>nà€octylfluoreneâ€∢i>altà6€benzothiadiazole) Nanotubes. Macromolecular Chemistry and Physics, 2016, 217, 2074-2080.	2.2	8
68	Porous Polyimide and Carbon Nanotubes: Solvent Vapor–Induced Transformation in the Nanochannels of Anodic Aluminum Oxide Templates. Macromolecular Materials and Engineering, 2019, 304, 1800700.	3.6	8
69	Preparation and thermal dissipation of hollow carbon fibers from electrospun polystyrene/poly(amic) Tj ETQq $1\ 1\ 0$	0.784314 5.4	rgBT /Overlo
70	Achieving Area-Selective Atomic Layer Deposition with Fluorinated Self-Assembled Monolayers Journal of Materials Chemistry C, 0, , .	5 . 5	8
71	On-Film Annealing: A Simple Method to Fabricate Heterogeneous Polymer Surfaces, Porous Films, and Hemispheres. ACS Macro Letters, 2015, 4, 721-724.	4.8	7
72	Fabrication, Morphology Control, and Electroless Metal Deposition of Electrospun ABS Fibers. Macromolecular Materials and Engineering, 2016, 301, 895-901.	3.6	7

#	Article	IF	Citations
73	Reversible morphology control of three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 695-701.	3.4	7
74	Controlled self-assemblies of polystyrene-block-polydimethylsiloxane micelles in cylindrical confinement through a micelle solution wetting method and Rayleigh-instability-driven transformation. Soft Matter, 2017, 13, 5428-5436.	2.7	7
75	Fabrication and Thermal Insulation Properties of Bambooâ€Shaped Polymer Fibers by Selective Solvent Vapor Annealing. Macromolecular Rapid Communications, 2018, 39, e1800424.	3.9	7
76	Hybrid "Kill and Release―Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS Applied Bio Materials, 2021, 4, 7893-7902.	4.6	7
77	Structural and Optical Identification of Planar Side-Chain Stacking P3HT Nanowires. Macromolecules, 2021, 54, 10750-10757.	4.8	7
78	Synthesis of alkyl-branched main chain copolyimides and their effect on the pretilt angles of liquid crystal alignment. Liquid Crystals, 2002, 29, 907-913.	2.2	6
79	Nanopressing: Toward Tailored Polymer Microstructures and Nanostructures. Macromolecular Rapid Communications, 2014, 35, 84-90.	3.9	6
80	Exceptionally low thermal conductivity of poly(3-hexylthiophene) single nanowires. RSC Advances, 2015, 5, 90847-90851.	3.6	6
81	Hierarchical hybrid nanostructures: controlled assembly of polymer-encapsulated gold nanoparticles via a Rayleigh-instability-driven transformation under cylindrical confinement. RSC Advances, 2016, 6, 54539-54543.	3.6	6
82	Dewetting of Swollen Poly(3-hexylthiophene) Films during Spin-Coating Processes: Implications for Device Fabrication. ACS Applied Nano Materials, 2018, 1, 2021-2028.	5.0	6
83	Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates. Soft Matter, 2018, 14, 2772-2776.	2.7	6
84	Controlled Assembly of Polymer-Tethered Gold Nanorods via a Rayleigh-Instability-Driven Transformation: Implications for Biomedical Applications. ACS Applied Nano Materials, 2019, 2, 2587-2592.	5.0	6
85	Bamboo-like nanostructures prepared using template-based wetting methods: Molecular arrangements of polyimide and carbon tubes in cylindrical nanopores. Polymer, 2019, 185, 121979.	3.8	6
86	Competition Between Effects of Pore Sizes and Annealing Solvents on the Morphology Manipulation of 3D Block Copolymer Nanostructures Using Anodic Aluminum Oxide Templates. Macromolecular Chemistry and Physics, 2016, 217, 1376-1383.	2.2	5
87	Anthradithiophene-based liquid crystal molecules: High carrier mobilities enhanced by rubbed polyimides for the application in organic field-effect transistors. Organic Electronics, 2018, 57, 82-88.	2.6	5
88	Curved block copolymer nanodiscs: structure transformations in cylindrical nanopores using the nonsolvent-assisted template wetting method. Soft Matter, 2019, 15, 8201-8209.	2.7	5
89	Laserâ€Assisted Nanowetting: Selective Fabrication of Polymer/Gold Nanorod Arrays Using Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2020, 41, 2000035.	3.9	5
90	Reproducible and Bendable SERS Substrates with Tailored Wettability Using Block Copolymers and Anodic Aluminum Oxide Templates. Macromolecular Rapid Communications, 2020, 41, 2000088.	3.9	5

#	Article	IF	Citations
91	Reversible and tunable morphologies of amphiphilic block copolymer nanorods confined in nanopores: Roles of annealing solvents. Polymer, 2021, 228, 123859.	3.8	5
92	Photoswitchable Composite Polymer Electrolytes Using Spiropyranâ€Immobilized Nanoporous Templates. Chemistry - A European Journal, 2021, 27, 14981-14988.	3.3	5
93	Fine Tuning Alkyl Substituents on Dithienoquinoxaline-Based Wide-Bandgap Polymer Donors for Organic Photovoltaics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 22353-22362.	8.0	5
94	Effects on Oxidation Waves of Conjugated Polymers by Studying Photoluminescence Quenching and Electrogenerated Chemiluminescence. Journal of Physical Chemistry C, 2011, 115, 10256-10263.	3.1	4
95	Electrogenerated Chemiluminescence of Pure Polymer Films and Polymer Blends. Macromolecular Rapid Communications, 2011, 32, 598-603.	3.9	4
96	Three-dimensional nanomasks using block copolymers confined in the nanopores of anodic aluminum oxide templates. Materials Today Communications, 2015, 3, 52-56.	1.9	4
97	Fabrication of Electrospun Polymer Fibers with Nonspherical Crossâ€Sections Using a Nanopressing Technique. Macromolecular Rapid Communications, 2016, 37, 239-245.	3.9	4
98	Shaping the Light: The Key Factors Affecting the Photophysical Properties of Fluorescent Polymer Nanostructures. Macromolecular Rapid Communications, 2016, 37, 2037-2044.	3.9	4
99	From Block Copolymer Nanotubes to Nanospheres: Nonsolvent-Induced Morphology Transformation Using Porous Templates. Langmuir, 2018, 34, 14388-14394.	3.5	4
100	Sunny-Side-Up Egg-Shaped Structures: Surface Modification To Form Anisotropic Polymer Particles Driven by the Plateau–Rayleigh Instability as Fluorescence Manipulation Platforms. Macromolecules, 2019, 52, 1601-1608.	4.8	4
101	Rayleighâ€Instabilityâ€Induced Transformation for Confined Polystyrene Nanotubes Prepared Using the Solventâ€Vaporâ€Induced Wetting Method. Macromolecular Materials and Engineering, 2020, 305, 1900465.	3.6	4
102	Highly Ordered Polymer Nanostructures via Solvent On-Film Annealing for Surface-Enhanced Raman Scattering. Langmuir, 2022, 38, 801-809.	3.5	4
103	Block Copolymer Micelle Nanotubes by the Solventâ€Annealingâ€Induced Nanowetting in Anodic Aluminum Oxide Templates. Macromolecular Chemistry and Physics, 2015, 216, 2154-2160.	2.2	3
104	Setting Foot in Asymmetric Wetting Environments: Fabrication of Mushroom-Like Anisotropic Polymer Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 28867-28874.	3.1	3
105	Morphology transformations of electrospun polymer fibers annealed on polymer films with thickness-controlled growth rates of undulation. Polymer, 2018, 134, 181-186.	3.8	3
106	Two-Step Solvent On-Film Annealing (2-SOFA) Method: Fabrication of Anisotropic Polymer Particles and Implications for Colloidal Self-Assembly. ACS Applied Nano Materials, 2018, 1, 4557-4565.	5.0	3
107	Radial Linear Polymer Patterns Driven by the Marangoni Instability and Lateral Phase Separation for the Formation of Nanoscale Perforation Lines. ACS Applied Nano Materials, 2019, 2, 3253-3261.	5.0	3
108	Sequential Selective Solvent On-Film Annealing: Fabrication of Monolayers of Ordered Anisotropic Polymer Particles. ACS Applied Materials & Interfaces, 2020, 12, 35731-35739.	8.0	3

#	Article	IF	Citations
109	Snake Tracks in Polymer Land: Wavy Polymer Structures via Selective Solvent Vapor Annealing. Langmuir, 2020, 36, 9780-9785.	3.5	3
110	Block copolymer micelles confined in cylindrical nanopores: Effects of annealing solvents and hybridization. Reactive and Functional Polymers, 2020, 150, 104534.	4.1	3
111	Laserâ€Induced NanoKneading (LINK): Deformation of Patterned Azopolymer Nanopillar Arrays via Photoâ€Fluidization. Macromolecular Rapid Communications, 2021, 42, 2000723.	3.9	3
112	Stretching and Bending of Azopolymer Nanorod Arrays via Laser-Induced Photo-Fluidization. ACS Applied Polymer Materials, 2022, 4, 4993-5000.	4.4	3
113	Breaking embedded electrospun fibers (<scp>BEEF</scp>): Fabrication of polymer spheres encapsulated in polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2463-2470.	2.1	2
114	Rapid separation of gold nanorods in multilayer aqueous systems via centrifugation. RSC Advances, 2016, 6, 90786-90791.	3.6	2
115	Selective solvent-induced reconstruction in confined space: one-dimensional mesoporous block copolymer structures in cylindrical nanopores. Polymer Chemistry, 2017, 8, 3399-3404.	3.9	2
116	Orientation Preferences of Interchain Stackings for Poly(3â€hexylthiophene) Nanowires Prepared Using Templateâ€Based Wetting Methods. Macromolecular Chemistry and Physics, 2018, 219, 1800078.	2.2	2
117	Hierarchical and Spiral Polymer Structures: Direct Electrospinning on Porous Anodic Aluminum Oxide Templates. Macromolecular Chemistry and Physics, 2019, 220, 1900169.	2.2	2
118	Fabrication and Thermal Dissipation Properties of Carbon Nanofibers Derived from Electrospun Poly(Amic Acid) Carboxylate Salt Nanofibers. Macromolecular Materials and Engineering, 2020, 305, 1900519.	3.6	2
119	Selective Light-Induced Nanowetting: Hierarchical Polymer Nanoarrays with Erasability and Rewritability via Photofluidization. Journal of Physical Chemistry C, 2021, 125, 15424-15432.	3.1	2
120	Electrospun <scp>PMMA</scp> fibers blended with <scp>coreâ€shell PCM</scp> / <scp>PS</scp> microspheres for thermal regulating applications. Journal of the Chinese Chemical Society, 2022, 69, 1519-1524.	1.4	2
121	Crystallization of Poly(methyl methacrylate) Stereocomplexes under Cylindrical Nanoconfinement. Macromolecules, 2021, 54, 2001-2010.	4.8	1
122	Laser-assisted nanowetting (LAN): Hierarchical Nanocomposites containing polymer/gold nanorods on breath figure films. Polymer, 2021, 221, 123636.	3.8	1
123	Polymer Nanostructures Using Nanoporous Templates. , 2018, , 165-203.		1
124	Macromol. Rapid Commun. 18/2014. Macromolecular Rapid Communications, 2014, 35, 1632-1632.	3.9	0
125	Macromol. Rapid Commun. 5/2015. Macromolecular Rapid Communications, 2015, 36, 500-500.	3.9	0
126	Threeâ€dimensional thermal annealing: An unconventional method to fabricate monodisperse polymer nanoparticles from polymer films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2471-2475.	2.1	0

#	Article	IF	CITATIONS
127	Rayleighâ€instabilityâ€induced transformation for confined polystyreneâ€grafted gold nanoparticles in anodic aluminum oxide templates. Journal of the Chinese Chemical Society, 2021, 68, 2045.	1.4	O