David H Munro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2712032/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Three-dimensional HYDRA simulations of National Ignition Facility targets. Physics of Plasmas, 2001, 8, 2275-2280.	1.9	579
2	Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Physics of Plasmas, 2011, 18, .	1.9	534
3	Progress towards ignition on the National Ignition Facility. Physics of Plasmas, 2013, 20, .	1.9	259
4	Capsule implosion optimization during the indirect-drive National Ignition Campaign. Physics of Plasmas, 2011, 18, .	1.9	131
5	Neutron spectrometry—An essential tool for diagnosing implosions at the National Ignition Facility (invited). Review of Scientific Instruments, 2012, 83, 10D308.	1.3	117
6	Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation. Physics of Plasmas, 2012, 19, .	1.9	115
7	A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments. Physics of Plasmas, 2012, 19, .	1.9	108
8	An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	98
9	Analysis of the neutron time-of-flight spectra from inertial confinement fusion experiments. Journal of Applied Physics, 2015, 118, .	2.5	92
10	Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility. Physics of Plasmas, 2014, 21, .	1.9	81
11	Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign. Physics of Plasmas, 2012, 19, .	1.9	78
12	Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions. Physics of Plasmas, 2019, 26, .	1.9	70
13	Nuclear imaging of the fuel assembly in ignition experiments. Physics of Plasmas, 2013, 20, 056320.	1.9	65
14	Interpreting inertial fusion neutron spectra. Nuclear Fusion, 2016, 56, 036001.	3.5	65
15	Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility. Physical Review E, 2016, 94, 021202.	2.1	49
16	Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental	1.9	28
17	Impact of temperature-velocity distribution on fusion neutron peak shape. Physics of Plasmas, 2017, 24,	1.9	27
18	Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility. Review of Scientific Instruments, 2016, 87, 11E715.	1.3	24

DAVID H MUNRO

#	Article	IF	CITATIONS
19	Observation of Hydrodynamic Flows in Imploding Fusion Plasmas on the National Ignition Facility. Physical Review Letters, 2021, 127, 125001.	7.8	20
20	Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facility. Physics of Plasmas, 2021, 28, .	1.9	12
21	First D+D neutron image at the National Ignition Facility. Physics of Plasmas, 2018, 25, .	1.9	9
22	Optimal choice of multiple line-of-sight measurements determining plasma hotspot velocity at the National Ignition Facility. Review of Scientific Instruments, 2021, 92, 023513.	1.3	5
23	Interpolating individual line-of-sight neutron spectrometer measurements onto the "sky―at the National Ignition Facility (NIF). Review of Scientific Instruments, 2021, 92, 043512.	1.3	5
24	Uncertainty analysis of signal deconvolution using a measured instrument response function. Review of Scientific Instruments, 2016, 87, 11D841.	1.3	3
25	Single and double shell ignition targets for the national ignition facility at 527 nm. Physics of Plasmas, 2021, 28, .	1.9	3