Balakrishnan Kirubasankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2711196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chemical Science, 2022, 13, 7707-7738.	7.4	28
2	Recent Progress in Grapheneâ€Based Microsupercapacitors. Energy Technology, 2021, 9, 2000844.	3.8	23
3	Substitutional Vanadium Sulfide Nanodispersed in MoS ₂ Film for Ptâ€Scalable Catalyst. Advanced Science, 2021, 8, e2003709.	11.2	19
4	Substitutional Vanadium Sulfide Nanodispersed in MoS ₂ Film for Ptâ€Scalable Catalyst (Adv.) Tj ETO	Qq0 0 0 rg 11.2	BT_/Overlock
5	Influence of pulse reverse current parameters on electrodeposition of copper-graphene nanocomposite coating. Applied Surface Science Advances, 2021, 5, 100116.	6.8	14
6	Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. Journal of Alloys and Compounds, 2021, 882, 160704.	5.5	17
7	Research progress in rare earths and their composites based electrode materials for supercapacitors. Green Energy and Environment, 2020, 5, 259-273.	8.7	89
8	Construction of heterogeneous 2D layered MoS2/MXene nanohybrid anode material via interstratification process and its synergetic effect for asymmetric supercapacitors. Applied Surface Science, 2020, 534, 147644.	6.1	68
9	Morphology restrained growth of V ₂ O ₅ by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chemical Communications, 2020, 56, 6412-6415.	4.1	95
10	2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chemical Engineering Journal, 2019, 355, 881-890.	12.7	209
11	Influence of pulse reverse current on mechanical and corrosion resistance properties of Ni-MoSe2 nanocomposite coatings. Applied Surface Science, 2019, 493, 225-230.	6.1	17
12	Sonochemical synthesis of a 2D–2D MoSe ₂ /graphene nanohybrid electrode material for asymmetric supercapacitors. Sustainable Energy and Fuels, 2019, 3, 467-477.	4.9	110
13	Facile synthesis of electrostatically anchored Nd(OH) ₃ nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New Journal of Chemistry, 2018, 42, 2923-2932.	2.8	69
14	<i>In situ</i> grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale, 2018, 10, 20414-20425.	5.6	332
15	A Facile Chemical Precipitation Method for the Synthesis of Nd(OH) ₃ and La(OH) ₃ Nanopowders and their Supercapacitor Performances. ChemistrySelect, 2018, 3, 12719-12724.	1.5	38

16	Development of CeO2 nanorods reinforced electrodeposited nickel nanocomposite coating and its tribological and corrosion resistance properties. Journal of Rare Earths, 2018, 36, 1319-1325.	4.8	22
17	Development of 2D La(OH)3 /graphene nanohybrid by a facile solvothermal reduction process for high-performance supercapacitors. Electrochimica Acta, 2018, 281, 329-337.	5.2	72

¹⁸Development of MoS Nanosheets Embedded Nickel Composite Coating and its Mechanical 2 Properties.
ES Materials & Manufacturing, 2018, , .1.92

#	Article	IF	CITATIONS
19	Hydrothermal assisted <i>in situ</i> growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Advances, 2017, 7, 5853-5862.	3.6	111
20	Electrospun Nd ³⁺ â€Doped LiMn ₂ O ₄ Nanofibers as Highâ€Performance Cathode Material for Liâ€Ion Capacitors. ChemElectroChem, 2017, 4, 2059-2067.	3.4	64
21	Electrodeposition and characterisation of Cu–MWCNTs nanocomposite coatings. Surface Engineering, 2017, 33, 369-374.	2.2	26
22	Synthesis and electrochemical performance of P2-Na0.67AlxCo1-xO2 (0.0Ââ‰Â×Ââ‰ÂO.5) nanopowders for sodium-ion capacitors. Ionics, 2017, 23, 731-739.	2.4	38
23	Mechanical and corrosion resistance properties of electrodeposited Cu–ZrO ₂ nanocomposites. Transactions of the Institute of Metal Finishing, 2015, 93, 262-266.	1.3	14
24	Microwave-assisted combustion synthesis of nanocrystalline Sm-doped La 2 Mo 2 O 9 oxide-ion conductors for SOFC application. Materials Research Bulletin, 2015, 68, 320-325.	5.2	14
25	Synthesis of Polythiophene and its Carbonaceous Nanofibers as Electrode Materials for Asymmetric Supercapacitors. Advanced Materials Research, 2014, 938, 151-157.	0.3	36
26	Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochimica Acta, 2014, 149, 152-158.	5.2	134