Ioan Pop

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2711050/publications.pdf

Version: 2024-02-01

7096 16183 27,254 645 78 124 citations h-index g-index papers 650 650 650 5295 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A review of the applications of nanofluids in solar energy. International Journal of Heat and Mass Transfer, 2013, 57, 582-594.	4.8	1,081
2	Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Physics Reports, 2019, 790, 1-48.	25.6	670
3	A review of entropy generation in nanofluid flow. International Journal of Heat and Mass Transfer, 2013, 65, 514-532.	4.8	434
4	Recent advances in modeling and simulation of nanofluid flowsâ€"Part II: Applications. Physics Reports, 2019, 791, 1-59.	25.6	389
5	Nanofluid flow and heat transfer in porous media: A review of the latest developments. International Journal of Heat and Mass Transfer, 2017, 107, 778-791.	4.8	377
6	Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. International Journal of Thermal Sciences, 2010, 49, 1663-1668.	4.9	323
7	Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid. International Journal of Heat and Mass Transfer, 2019, 136, 288-297.	4.8	262
8	Stagnation point flow of a micropolar fluid towards a stretching sheet. International Journal of Non-Linear Mechanics, 2004, 39, 1227-1235.	2.6	261
9	Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip. International Journal of Heat and Mass Transfer, 2013, 60, 355-364.	4.8	239
10	Boundary layer flow and heat transfer over an unsteady stretching vertical surface. Meccanica, 2009, 44, 369-375.	2.0	237
11	Free convection in a square porous cavity using a thermal nonequilibrium model. International Journal of Thermal Sciences, 2002, 41, 861-870.	4.9	218
12	Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. International Communications in Heat and Mass Transfer, 2010, 37, 987-991.	5.6	217
13	STAGNATION-POINT FLOW OVER A SHRINKING SHEET IN A MICROPOLAR FLUID. Chemical Engineering Communications, 2010, 197, 1417-1427.	2.6	216
14	Flow and heat transfer over a rotating porous disk in a nanofluid. Physica B: Condensed Matter, 2011, 406, 1767-1772.	2.7	199
15	Dual solutions for mixed convective stagnation-point flow of an aqueous silica–alumina hybrid nanofluid. Chinese Journal of Physics, 2018, 56, 2465-2478.	3.9	195
16	Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. International Journal of Engineering Science, 2004, 42, 1241-1253.	5.0	193
17	Falkner–Skan problem for a static or moving wedge in nanofluids. International Journal of Thermal Sciences, 2011, 50, 133-139.	4.9	186
18	Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet. International Journal of Heat and Mass Transfer, 2012, 55, 2945-2952.	4.8	177

#	Article	IF	CITATIONS
19	Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. Nonlinear Analysis: Real World Applications, 2009, 10, 2909-2913.	1.7	174
20	MHD stagnation point flow towards a stretching sheet. Physica A: Statistical Mechanics and Its Applications, 2009, 388, 3377-3383.	2.6	174
21	Explicit analytic solution for similarity boundary layer equations. International Journal of Heat and Mass Transfer, 2004, 47, 75-85.	4.8	168
22	MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: Hybrid nanofluid versus nanofluid. Powder Technology, 2020, 367, 192-205.	4.2	163
23	Magnetohydrodynamic (MHD) flow and heat transfer due to a stretching cylinder. Energy Conversion and Management, 2008, 49, 3265-3269.	9.2	158
24	On the stagnation-point flow towards a stretching sheet with homogeneous–heterogeneous reactions effects. Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 4296-4302.	3.3	158
25	MHD mixed convection in a lid-driven cavity with corner heater. International Journal of Heat and Mass Transfer, 2011, 54, 3494-3504.	4.8	157
26	Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. International Journal of Thermal Sciences, 2012, 59, 126-140.	4.9	152
27	Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: Application in solar collectors. International Journal of Heat and Mass Transfer, 2018, 116, 751-761.	4.8	149
28	Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet. International Journal of Heat and Mass Transfer, 2012, 55, 2102-2109.	4.8	147
29	The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate. International Journal of Engineering Science, 1992, 30, 1-6.	5.0	145
30	Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4075-4079.	2.1	143
31	Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder. Applied Mathematical Modelling, 2008, 32, 2059-2066.	4.2	141
32	Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. European Journal of Mechanics, B/Fluids, 2015, 51, 61-67.	2.5	139
33	Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid. Computers and Fluids, 2011, 47, 16-21.	2.5	138
34	Analysis of melting behavior of PCMs in a cavity subject to a non-uniform magnetic field using a moving grid technique. Applied Mathematical Modelling, 2020, 77, 1936-1953.	4.2	138
35	Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chinese Journal of Physics, 2020, 64, 251-263.	3.9	138
36	Magnetic field effect on the unsteady natural convection in a wavy-walled cavity filled with a nanofluid: Buongiorno's mathematical model. Journal of the Taiwan Institute of Chemical Engineers, 2016, 61, 211-222.	5. 3	137

#	Article	IF	Citations
37	Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Research Letters, 2011, 6, 623.	5.7	136
38	Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. International Journal of Thermal Sciences, 2011, 50, 2141-2153.	4.9	134
39	Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid. European Journal of Mechanics, B/Fluids, 2007, 26, 669-687.	2.5	132
40	Stagnation-point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1716-1735.	2.8	132
41	Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. Journal of Molecular Liquids, 2018, 249, 980-990.	4.9	129
42	MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Computers and Fluids, 2013, 72, 46-62.	2.5	128
43	Effect of sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity. International Journal of Heat and Mass Transfer, 2007, 50, 1771-1780.	4.8	127
44	Heat transfer over a stretching surface with variable heat flux in micropolar fluids. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 559-561.	2.1	127
45	Mixed convection boundary layer flow and heat transfer over a vertical plate embedded in a porous medium filled with a suspension of nano-encapsulated phase change materials. Journal of Molecular Liquids, 2019, 293, 111432.	4.9	124
46	Natural convection of nanofluid inside a wavy cavity with a non-uniform heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 958-980.	2.8	123
47	MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3012-3038.	2.8	121
48	Boundary Layer Flow over a Continuously Moving Thin Needle in a Parallel Free Stream. Chinese Physics Letters, 2007, 24, 2895-2897.	3.3	117
49	Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Research Letters, 2011, 6, 314.	5.7	117
50	Energy storage system based on nanoparticle-enhanced phase change material inside porous medium. International Journal of Thermal Sciences, 2015, 91, 49-58.	4.9	117
51	Falkner-Skan equation for flow past a moving wedge with suction or injection. Journal of Applied Mathematics and Computing, 2007, 25, 67-83.	2.5	115
52	Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1381-1398.	3.6	114
53	Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. International Journal of Heat and Mass Transfer, 2012, 55, 8122-8128.	4.8	113
54	Free convection in a partially heated wavy porous cavity filled with a nanofluid under the effects of Brownian diffusion and thermophoresis. Applied Thermal Engineering, 2017, 113, 413-418.	6.0	113

#	Article	lF	CITATIONS
55	Blasius and Sakiadis problems in nanofluids. Acta Mechanica, 2011, 218, 195-204.	2.1	112
56	Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B: Condensed Matter, 2010, 405, 4914-4918.	2.7	110
57	Flow and heat transfer characteristics on a moving plate in a nanofluid. International Journal of Heat and Mass Transfer, 2012, 55, 642-648.	4.8	110
58	Hybrid nanofluid flow and heat transfer over a nonlinear permeable stretching/shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 3110-3127.	2.8	110
59	Mixed convection of a hybrid nanofluid flow along a vertical surface embedded in a porous medium. International Communications in Heat and Mass Transfer, 2020, 114, 104565.	5.6	109
60	MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. European Journal of Mechanics, B/Fluids, 2020, 84, 71-80.	2.5	106
61	Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. European Journal of Mechanics, B/Fluids, 2007, 26, 15-27.	2.5	105
62	Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with Joule heating: A comparative analysis. AEJ - Alexandria Engineering Journal, 2020, 59, 1787-1798.	6.4	105
63	Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow. AEJ - Alexandria Engineering Journal, 2020, 59, 91-99.	6.4	101
64	MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 2020, 66, 630-644.	3.9	101
65	Mixed convection stagnation point flow past a vertical flat plate with a second order slip: Heat flux case. International Journal of Heat and Mass Transfer, 2013, 65, 102-109.	4.8	99
66	MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. International Communications in Heat and Mass Transfer, 2020, 110, 104409.	5.6	98
67	Free Convection in a Parallelogrammic Porous Cavity Filled with a Nanofluid Using Tiwari and Das' Nanofluid Model. PLoS ONE, 2015, 10, e0126486.	2.5	95
68	Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. Journal of Thermal Analysis and Calorimetry, 2019, 135, 1171-1184.	3.6	93
69	Effect of thermal dispersion on transient natural convection in a wavy-walled porous cavity filled with a nanofluid: Tiwari and Das' nanofluid model. International Journal of Heat and Mass Transfer, 2016, 92, 1053-1060.	4.8	92
70	Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Scientific Reports, 2014, 4, 4404.	3.3	91
71	Analysis of Entropy Generation in Natural Convection of Nanofluid inside a Square Cavity Having Hot Solid Block: Tiwari and Das' Model. Entropy, 2016, 18, 9.	2.2	90
72	Cu-Al2O3/water hybrid nanofluid flow over a permeable moving surface in presence of hydromagnetic and suction effects. AEJ - Alexandria Engineering Journal, 2020, 59, 657-666.	6.4	90

#	Article	IF	CITATIONS
73	Entropy generation between two vertical cylinders in the presence of MHD flow subjected to constant wall temperature. International Communications in Heat and Mass Transfer, 2013, 44, 87-92.	5.6	89
74	A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner. Scientific Reports, 2019, 9, 16290.	3.3	89
75	Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall. International Communications in Heat and Mass Transfer, 2008, 35, 56-64.	5.6	86
76	Vertical Free Convective Boundary-Layer Flow in a Porous Medium Using a Thermal Nonequilibrium Model. Journal of Porous Media, 2000, 3, 31-44.	1.9	85
77	Boundary layer flow past a continuously moving thin needle in a nanofluid. Applied Thermal Engineering, 2017, 114, 58-64.	6.0	84
78	MHD flow and heat transfer of hybrid nanofluid over a permeable moving surface in the presence of thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 858-879.	2.8	83
79	Natural Convection from a Discrete Heater in a Square Cavity Filled with a Porous Medium. Journal of Porous Media, 2005, 8, 55-64.	1.9	83
80	Magnetohydrodynamic (MHD) flow of a micropolar fluid towards a stagnation point on a vertical surface. Computers and Mathematics With Applications, 2008, 56, 3188-3194.	2.7	82
81	A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition. International Journal of Heat and Mass Transfer, 2012, 55, 5076-5086.	4.8	82
82	Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. European Journal of Mechanics, B/Fluids, 2014, 46, 37-45.	2.5	82
83	Irreversibility analysis of a vertical annulus using TiO2/water nanofluid with MHD flow effects. International Journal of Heat and Mass Transfer, 2013, 64, 671-679.	4.8	81
84	Fully developed mixed convection flow of a nanofluid through an inclined channel filled with a porous medium. International Journal of Heat and Mass Transfer, 2012, 55, 907-914.	4.8	80
85	Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chinese Journal of Physics, 2020, 68, 468-482.	3.9	80
86	MHD mixed convection flow near the stagnation-point on a vertical permeable surface. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 40-46.	2.6	79
87	MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field. Heat and Mass Transfer, 2011, 47, 155-162.	2.1	78
88	Mixed convection flow over a solid sphere embedded in a porous medium filled by a nanofluid containing gyrotactic microorganisms. International Journal of Heat and Mass Transfer, 2013, 62, 647-660.	4.8	78
89	Unsteady hybrid nanofluid flow over a radially permeable shrinking/stretching surface. Journal of Molecular Liquids, 2021, 331, 115752.	4.9	78
90	Melting heat transfer in steady laminar flow over a moving surface. Heat and Mass Transfer, 2010, 46, 463-468.	2.1	77

#	Article	IF	CITATIONS
91	Falkner–Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid. International Communications in Heat and Mass Transfer, 2011, 38, 149-153.	5.6	77
92	Flow and heat transfer over an unsteady shrinking sheet with suction in nanofluids. International Journal of Heat and Mass Transfer, 2012, 55, 1888-1895.	4.8	77
93	Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall. International Communications in Heat and Mass Transfer, 2013, 46, 134-141.	5.6	77
94	Three-Dimensional Hybrid Nanofluid Flow and Heat Transfer past a Permeable Stretching/Shrinking Sheet with Velocity Slip and Convective Condition. Chinese Journal of Physics, 2020, 66, 157-171.	3.9	77
95	Mixed convection flow over an exponentially stretching/shrinking vertical surface in a hybrid nanofluid. AEJ - Alexandria Engineering Journal, 2020, 59, 1881-1891.	6.4	77
96	Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity. AEJ - Alexandria Engineering Journal, 2021, 60, 915-926.	6.4	77
97	Non-Darcian effects on natural convection heat transfer in a wavy porous enclosure. International Journal of Heat and Mass Transfer, 2009, 52, 1887-1896.	4.8	76
98	Visualization of natural convection heat transport using heatline method in porous non-isothermally heated triangular cavity. International Journal of Heat and Mass Transfer, 2008, 51, 5040-5051.	4.8	75
99	Natural convection in right-angle porous trapezoidal enclosure partially cooled from inclined wall. International Communications in Heat and Mass Transfer, 2009, 36, 6-15.	5.6	75
100	Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: A new combination of theoretical and experimental models. Chinese Journal of Physics, 2021, 71, 574-588.	3.9	74
101	Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating. AEJ - Alexandria Engineering Journal, 2022, 61, 1938-1945.	6.4	73
102	Dual solutions in mixed convection flow near a stagnation point on a vertical porous plate. International Journal of Thermal Sciences, 2008, 47, 417-422.	4.9	72
103	Hybrid nanofluid flow and heat transfer past a vertical thin needle with prescribed surface heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4875-4894.	2.8	72
104	Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al2O3/Water Nanofluid. Mathematics, 2020, 8, 912.	2.2	72
105	MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect. Journal of Magnetism and Magnetic Materials, 2016, 407, 235-240.	2.3	71
106	Moving wedge and flat plate in a micropolar fluid. International Journal of Engineering Science, 2006, 44, 1225-1236.	5.0	70
107	Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN. Scientific Reports, 2017, 7, 17369.	3.3	70
108	Inclined Lorentz force impact on convective-radiative heat exchange of micropolar nanofluid inside a porous enclosure with tilted elliptical heater. International Communications in Heat and Mass Transfer, 2020, 117, 104762.	5.6	70

#	Article	IF	Citations
109	Hybrid nanofluid flow towards a stagnation point on a stretching/shrinking cylinder. Scientific Reports, 2020, 10, 9296.	3.3	69
110	Heat generation/absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet. Chinese Journal of Physics, 2021, 69, 118-133.	3.9	69
111	Micropolar fluid flow towards a stretching/shrinking sheet in a porous medium with suction. International Communications in Heat and Mass Transfer, 2012, 39, 826-829.	5.6	68
112	The boundary layers of an unsteady stagnation-point flow in a nanofluid. International Journal of Heat and Mass Transfer, 2012, 55, 6499-6505.	4.8	68
113	Effects of moving lid direction on MHD mixed convection in a linearly heated cavity. International Journal of Heat and Mass Transfer, 2012, 55, 1103-1112.	4.8	68
114	Free convection in a triangular cavity filled with a porous medium saturated by a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1138-1161.	2.8	68
115	MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 109-118.	3.3	67
116	Flow and heat transfer along a permeable stretching/shrinking curved surface in a hybrid nanofluid. Physica Scripta, 2019, 94, 105219.	2.5	67
117	Unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 2004, 47, 2681-2688.	4.8	66
118	Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. International Journal of Heat and Mass Transfer, 2017, 105, 610-622.	4.8	66
119	MHD natural convection and entropy analysis of a nanofluid inside T-shaped baffled enclosure. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2916-2941.	2.8	66
120	Free convection heat transfer of MgO-MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4349-4376.	2.8	66
121	Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation. Mathematics, 2021, 9, 30.	2.2	66
122	Analysis of mixed convection flow of a nanofluid in a vertical channel with the Buongiorno mathematical model. International Communications in Heat and Mass Transfer, 2013, 44, 15-22.	5.6	64
123	Numerical analysis of natural convection in an inclined trapezoidal enclosure filled with a porous medium. International Journal of Thermal Sciences, 2008, 47, 1316-1331.	4.9	63
124	Flow and heat transfer characteristics on a moving flat plate in a parallel stream with constant surface heat flux. Heat and Mass Transfer, 2009, 45, 563-567.	2.1	63
125	Flow and heat transfer in a nano-liquid film over an unsteady stretching surface. International Journal of Heat and Mass Transfer, 2013, 60, 646-652.	4.8	62
126	Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. International Communications in Heat and Mass Transfer, 2013, 47, 68-72.	5.6	62

#	Article	IF	Citations
127	Free convection in a porous wavy cavity filled with a nanofluid using Buongiorno's mathematical model with thermal dispersion effect. Applied Mathematics and Computation, 2017, 299, 1-15.	2.2	62
128	Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4408-4429.	2.8	62
129	Mixed convection in a square vented enclosure filled with a porous medium. International Journal of Heat and Mass Transfer, 2006, 49, 2190-2206.	4.8	61
130	Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Advanced Powder Technology, 2017, 28, 900-909.	4.1	61
131	MHD flow and heat transfer over a radially stretching/shrinking disk. Chinese Journal of Physics, 2018, 56, 58-66.	3.9	61
132	Entropy analysis due to conjugate-buoyant flow in a right-angle trapezoidal enclosure filled with a porous medium bounded by a solid vertical wall. International Journal of Thermal Sciences, 2009, 48, 1161-1175.	4.9	59
133	Effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface. International Communications in Heat and Mass Transfer, 2014, 53, 50-55.	5.6	59
134	Unsteady flow due to a contracting cylinder in a nanofluid using Buongiorno's model. International Journal of Heat and Mass Transfer, 2014, 68, 509-513.	4.8	59
135	Analysis of first and second laws of thermodynamics between two isothermal cylinders with relative rotation in the presence of MHD flow. International Journal of Heat and Mass Transfer, 2012, 55, 4808-4816.	4.8	58
136	Axisymmetric mixed convective stagnation-point flow of a nanofluid over a vertical permeable cylinder by Tiwari-Das nanofluid model. Powder Technology, 2017, 311, 147-156.	4.2	58
137	An MHD couple stress fluid due to a perforated sheet undergoing linear stretching with heat transfer. International Journal of Heat and Mass Transfer, 2017, 105, 157-167.	4.8	58
138	Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped cavity using Lattice Boltzmann method. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1930-1955.	2.8	58
139	MHD hybrid nanofluid flow over a permeable stretching/shrinking sheet with thermal radiation effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1014-1031.	2.8	58
140	Mixed convection boundary layer flow of a viscoelastic fluid over a horizontal circular cylinder. International Journal of Non-Linear Mechanics, 2008, 43, 814-821.	2.6	57
141	Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium. International Communications in Heat and Mass Transfer, 2011, 38, 1029-1032.	5.6	57
142	Natural convection in a differentially heated enclosure filled with a micropolar fluid. International Journal of Thermal Sciences, 2007, 46, 963-969.	4.9	56
143	The effects of transpiration on the flow and heat transfer over a moving permeable surface in a parallel stream. Chemical Engineering Journal, 2009, 148, 63-67.	12.7	56
144	Flow and heat transfer over an unsteady shrinking sheet with suction in a nanofluid using Buongiorno's model. International Communications in Heat and Mass Transfer, 2013, 43, 75-80.	5.6	56

#	Article	IF	Citations
145	Numerical exploration of a non-Newtonian Carreau fluid flow driven by catalytic surface reactions on an upper horizontal surface of a paraboloid of revolution, buoyancy and stretching at the free stream. AEJ - Alexandria Engineering Journal, 2017, 56, 647-658.	6.4	56
146	Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1211-1231.	2.8	56
147	Unsteady stagnation flow and heat transfer towards a shrinking sheet. International Communications in Heat and Mass Transfer, 2010, 37, 1440-1446.	5.6	55
148	Unsteady boundary layer flow of a nanofluid past a moving surface in an external uniform free stream using Buongiorno's model. Computers and Fluids, 2014, 95, 49-55.	2.5	55
149	Flow and heat transfer of magnetohydrodynamic three-dimensional Maxwell nanofluid over a permeable stretching/shrinking surface with convective boundary conditions. International Journal of Mechanical Sciences, 2017, 124-125, 166-173.	6.7	55
150	Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: A development on Falkner–Skan problem. Chinese Journal of Physics, 2021, 74, 406-420.	3.9	55
151	Free convection in a porous horizontal cylindrical annulus with a nanofluid using Buongiorno's model. Computers and Fluids, 2015, 118, 182-190.	2.5	54
152	Laminar filmwise condensation of nanofluids over a vertical plate considering nanoparticles migration. Applied Thermal Engineering, 2016, 100, 979-986.	6.0	54
153	Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3737-3754.	2.8	53
154	Analytic Series Solution for Unsteady Mixed Convection Boundary Layer Flow Near the Stagnation Point on a Vertical Surface in a Porous Medium. Transport in Porous Media, 2005, 61, 365-379.	2.6	52
155	The Magnetohydrodynamic Stagnation Point Flow of a Nanofluid over a Stretching/Shrinking Sheet with Suction. PLoS ONE, 2015, 10, e0117733.	2.5	52
156	Rotating flow over an exponentially shrinking sheet with suction. Journal of Molecular Liquids, 2015, 211, 965-969.	4.9	52
157	Natural convection of micropolar fluid in a wavy differentially heated cavity. Journal of Molecular Liquids, 2016, 221, 518-525.	4.9	52
158	Tiwari-Das nanofluid model for magnetohydrodynamics (MHD) natural-convective flow of a nanofluid adjacent to a spinning down-pointing vertical cone. Propulsion and Power Research, 2018, 7, 78-90.	4.3	52
159	Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle. Mathematics, 2020, 8, 612.	2.2	52
160	Hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 216-235.	2.8	52
161	Unsteady squeezing flow of Cu-Al2O3/water hybrid nanofluid in a horizontal channel with magnetic field. Scientific Reports, 2021, 11, 14128.	3.3	52
162	Fully developed mixed convection flow in a vertical channel filled with nanofluids. International Communications in Heat and Mass Transfer, 2012, 39, 1086-1092.	5.6	51

#	Article	IF	CITATIONS
163	Stagnation-Point Flow Toward a Stretching/Shrinking Sheet in a Nanofluid Containing Both Nanoparticles and Gyrotactic Microorganisms. Journal of Heat Transfer, 2014, 136, .	2.1	51
164	Buongiorno's model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid. Advanced Powder Technology, 2015, 26, 1423-1434.	4.1	51
165	Unsteady MHD flow and heat transfer near stagnation point over a stretching/shrinking sheet in porous medium filled with a nanofluid. Chinese Physics B, 2014, 23, 048203.	1.4	50
166	Flow and heat transfer of Powell–Eyring fluid over a shrinking surface in a parallel free stream. International Journal of Heat and Mass Transfer, 2014, 71, 321-327.	4.8	50
167	Stability analysis of magnetohydrodynamic stagnation-point flow toward a stretching/shrinking sheet. Computers and Fluids, 2014, 102, 94-98.	2.5	50
168	Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 40-62.	2.8	50
169	Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2318-2332.	2.8	50
170	Mixed convection boundary-layer stagnation point flow past a vertical stretching/shrinking surface in a nanofluid. Applied Thermal Engineering, 2017, 115, 1412-1417.	6.0	50
171	MHD natural convection of Cu/H ₂ O nanofluid in a horizontal semi-cylinder with a local triangular heater. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2979-2996.	2.8	50
172	Boundary Layer on a Moving Wall with Suction and Injection. Chinese Physics Letters, 2007, 24, 2274-2276.	3.3	49
173	Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. International Journal of Heat and Mass Transfer, 2008, 51, 1613-1627.	4.8	49
174	Flow Past a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Two-Phase Model. PLoS ONE, 2014, 9, e111743.	2.5	49
175	Stagnation-point flow and heat transfer over an exponentially stretching/shrinking cylinder. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 65-72.	5.3	49
176	On the Stability of MHD Boundary Layer Flow over a Stretching/Shrinking Wedge. Scientific Reports, 2018, 8, 13622.	3.3	49
177	Unsteady Three-Dimensional MHD Non-Axisymmetric Homann Stagnation Point Flow of a Hybrid Nanofluid with Stability Analysis. Mathematics, 2020, 8, 784.	2.2	49
178	Influence of buoyancy force on Ag-MgO/water hybrid nanofluid flow in an inclined permeable stretching/shrinking sheet. International Communications in Heat and Mass Transfer, 2021, 123, 105236.	5.6	49
179	Stability Analysis of MHD Stagnation-point Flow towards a Permeable Stretching/Shrinking Sheet in a Nanofluid with Chemical Reactions Effect. Sains Malaysiana, 2019, 48, 243-250.	0.5	49
180	A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. Journal of Thermal Analysis and Calorimetry, 2019, 138, 827.	3.6	48

#	Article	IF	CITATIONS
181	Steady free convection flow within a titled nanofluid saturated porous cavity in the presence of a sloping magnetic field energized by an exothermic chemical reaction administered by Arrhenius kinetics. International Journal of Heat and Mass Transfer, 2019, 129, 198-211.	4.8	48
182	Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder. Thermal Science, 2015, 19, 549-561.	1.1	48
183	Free convection in a trapezoidal cavity filled with a micropolar fluid. International Journal of Heat and Mass Transfer, 2016, 99, 831-838.	4.8	47
184	Magnetohydrodynamic Boundary Layer Flow and Heat Transfer of Nanofluids Past a Bidirectional Exponential Permeable Stretching/Shrinking Sheet With Viscous Dissipation Effect. Journal of Heat Transfer, 2019, 141, .	2.1	47
185	Unsteady MHD flow and heat transfer over a shrinking sheet with ohmic heating. Chinese Journal of Physics, 2017, 55, 1626-1636.	3.9	46
186	Magnetohydrodynamic rotating flow and heat transfer of ferrofluid due to an exponentially permeable stretching/shrinking sheet. Journal of Magnetism and Magnetic Materials, 2018, 465, 365-374.	2.3	46
187	Mixed Convection Stagnation-Point Flow of a Nanofluid Past a Permeable Stretching/Shrinking Sheet in the Presence of Thermal Radiation and Heat Source/Sink. Energies, 2019, 12, 788.	3.1	46
188	MHD free convection flow in an inclined square cavity filled with both nanofluids and gyrotactic microorganisms. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4642-4659.	2.8	46
189	Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer, 2021, 123, 105205.	5.6	46
190	Dual solutions in mixed convection flow near a stagnation point on a vertical surface in a porous medium. International Journal of Heat and Mass Transfer, 2008, 51, 1150-1155.	4.8	45
191	MHD boundary-layer flow due to a moving extensible surface. Journal of Engineering Mathematics, 2008, 62, 23-33.	1.2	45
192	Investigation of natural convection in triangular enclosure filled with porous medi saturated with water near 4°C. Energy Conversion and Management, 2009, 50, 1473-1480.	9.2	45
193	Mixed convection boundary layer flow along vertical thin needles in nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 579-594.	2.8	45
194	Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface. Mathematics, 2020, 8, 898.	2.2	45
195	Radiative mixed convective flow induced by hybrid nanofluid over a porous vertical cylinder in a porous media with irregular heat sink/source. Case Studies in Thermal Engineering, 2022, 30, 101711.	5.7	45
196	Bond between powder type self-compacting concrete and steel reinforcement. Construction and Building Materials, 2013, 41, 824-833.	7.2	44
197	Unsteady Micropolar Fluid over a Permeable Curved Stretching Shrinking Surface. Mathematical Problems in Engineering, 2017, 2017, 1-13.	1.1	44
198	Flow and heat transfer over a generalized stretching/shrinking wall problemâ€"Exact solutions of the Navierâ€"Stokes equations. International Journal of Non-Linear Mechanics, 2011, 46, 1116-1127.	2.6	43

#	Article	IF	CITATIONS
199	Natural convection heat transfer in a partially opened cavity filled with porous media. International Journal of Heat and Mass Transfer, 2011, 54, 2253-2261.	4.8	43
200	Sensitivity analysis for MHD effects and inclination angles on natural convection heat transfer and entropy generation of Al2O3-water nanofluid in square cavity by Response Surface Methodology. International Communications in Heat and Mass Transfer, 2016, 79, 46-57.	5.6	43
201	Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno's models. Journal of Molecular Liquids, 2018, 266, 19-28.	4.9	43
202	Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis. Communications in Nonlinear Science and Numerical Simulation, 2019, 66, 183-193.	3.3	43
203	Insight into the dynamics of ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) nanofluids inside a hexagonal cavity in the presence of a non-uniform magnetic field. Journal of Magnetism and Magnetic Materials, 2020, 497, 166024.	2.3	43
204	Flow and heat transfer of hybrid nanofluid induced by an exponentially stretching/shrinking curved surface. Case Studies in Thermal Engineering, 2021, 25, 100982.	5.7	43
205	Shape factor effect of radiative Cu–Al2O3/H2O hybrid nanofluid flow towards an EMHD plate. Case Studies in Thermal Engineering, 2021, 26, 101199.	5.7	43
206	Boundary-layer flow of a micropolar fluid on a continuous moving or fixed surface. Canadian Journal of Physics, 2006, 84, 399-410.	1.1	42
207	Series solutions for steady three-dimensional stagnation point flow of a nanofluid past a circular cylinder with sinusoidal radius variation. Meccanica, 2013, 48, 643-652.	2.0	42
208	Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet. Scientific Reports, 2016, 6, 24632.	3.3	42
209	Unsteady Stagnation Point Flow of Hybrid Nanofluid Past a Convectively Heated Stretching/Shrinking Sheet with Velocity Slip. Mathematics, 2020, 8, 1649.	2.2	42
210	Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating. International Journal of Mechanical Sciences, 2017, 128-129, 541-549.	6.7	41
211	On the stability of the flow and heat transfer over a moving thin needle with prescribed surface heat flux. Chinese Journal of Physics, 2019, 60, 651-658.	3.9	41
212	Marangoni hybrid nanofluid flow over a permeable infinite disk embedded in a porous medium. International Communications in Heat and Mass Transfer, 2021, 126, 105421.	5.6	41
213	Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 624-640.	2.8	40
214	Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chinese Journal of Physics, 2020, 66, 606-619.	3.9	40
215	Natural Convection Inside an Inclined Wavy Enclosure Filled with a Porous Medium. Transport in Porous Media, 2006, 64, 229-246.	2.6	39
216	Unsteady viscous flow over a shrinking cylinder. Journal of King Saud University - Science, 2013, 25, 143-148.	3.5	39

#	Article	IF	Citations
217	The influence of thermal radiation on unsteady free convection in inclined enclosures filled by a nanofluid with sinusoidal boundary conditions. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1738-1753.	2.8	39
218	Thermal Radiation and MHD Effects in the Mixed Convection Flow of Fe3O4–Water Ferrofluid towards a Nonlinearly Moving Surface. Processes, 2020, 8, 95.	2.8	39
219	MHD mixed convection flow of a hybrid nanofluid past a permeable vertical flat plate with thermal radiation effect. AEJ - Alexandria Engineering Journal, 2022, 61, 3323-3333.	6.4	39
220	MHD Stagnation-Point Flow over a Stretching/Shrinking Sheet in a Micropolar Fluid with a Slip Boundary. Sains Malaysiana, 2018, 47, 2907-2916.	0.5	39
221	Boundary layer flow over a moving surface in a nanofluid beneath a uniform free stream. International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21, 828-846.	2.8	38
222	Natural convection in a horizontal cylindrical annulus filled with a porous medium saturated by a nanofluid using Tiwari and Das' nanofluid model. European Physical Journal Plus, 2015, 130, 1.	2.6	38
223	Free convection in a square porous cavity filled with a nanofluid using thermal non equilibrium and Buongiorno models. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 671-693.	2.8	38
224	Magnetohydrodynamics Flow Past a Moving Vertical Thin Needle in a Nanofluid with Stability Analysis. Energies, 2018, 11, 3297.	3.1	38
225	Hybrid nanofluid flow through an exponentially stretching/shrinking sheet with mixed convection and Joule heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1930-1950.	2.8	38
226	Maximum density effects on buoyancy-driven convection in a porous trapezoidal cavity. International Communications in Heat and Mass Transfer, 2010, 37, 401-409.	5.6	37
227	Partial Slip Flow and Heat Transfer over a Stretching Sheet in a Nanofluid. Mathematical Problems in Engineering, 2013, 2013, 1-7.	1.1	37
228	Unsteady convective heat and mass transfer of a nanofluid in Howarth's stagnation point by Buongiorno's model. International Journal of Numerical Methods for Heat and Fluid Flow, 2015, 25, 1176-1197.	2.8	37
229	Dufour and Soret effects on Al ₂ O ₃ -water nanofluid flow over a moving thin needle: Tiwari and Das model. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 766-782.	2.8	37
230	Melting Effect on Mixed Convection Boundary Layer Flow About a Vertical Surface Embedded in a Porous Medium: Opposing Flows Case. Transport in Porous Media, 2014, 102, 317-323.	2.6	36
231	Natural Convection and Entropy Generation in a Square Cavity with Variable Temperature Side Walls Filled with a Nanofluid: Buongiorno's Mathematical Model. Entropy, 2017, 19, 337.	2.2	36
232	A Stability Analysis for Magnetohydrodynamics Stagnation Point Flow with Zero Nanoparticles Flux Condition and Anisotropic Slip. Energies, 2019, 12, 1268.	3.1	36
233	Analytical prediction of multiple solutions for MHD Jeffery–Hamel flow and heat transfer utilizing KKL nanofluid model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 176-185.	2.1	36
234	Mixed Convection to Power-Law Type Non-Newtonian Fluids from a Vertical Wall. Polymer-Plastics Technology and Engineering, 1991, 30, 47-65.	1.9	35

#	Article	IF	Citations
235	Influence of inclination angle on buoyancy-driven convection in triangular enclosure filled with a fluid-saturated porous medium. Heat and Mass Transfer, 2008, 44, 617-624.	2.1	35
236	Boundary layer flow over a moving surface in a nanofluid with suction or injection. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 34-40.	3.4	35
237	Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source. International Journal of Mechanical Sciences, 2017, 120, 182-189.	6.7	35
238	Mixed convection heat transfer in a square porous cavity filled with a nanofluid with suction/injection effect. Computers and Mathematics With Applications, 2018, 76, 2665-2677.	2.7	35
239	MHD mixed convection flow and heat transfer in an open C-shaped enclosure using water-copper oxide nanofluid. Heat and Mass Transfer, 2018, 54, 1791-1801.	2.1	34
240	Oblique stagnation slip flow of a micropolar fluid towards a stretching/shrinking surface: A stability analysis. Chinese Journal of Physics, 2018, 56, 3062-3072.	3.9	34
241	Hiemenz flow over a shrinking sheet in a hybrid nanofluid. Results in Physics, 2020, 19, 103351.	4.1	34
242	Cu-Al2O3/Water Hybrid Nanofluid Stagnation Point Flow Past MHD Stretching/Shrinking Sheet in Presence of Homogeneous-Heterogeneous and Convective Boundary Conditions. Mathematics, 2020, 8, 1237.	2.2	34
243	Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics, 2021, 72, 461-474.	3.9	34
244	Unsteady mixed convection boundary-layer flow with suction and temperature slip effects near the stagnation point on a vertical permeable surface embedded in a porous medium. Transport in Porous Media, 2012, 92, 1-14.	2.6	33
245	MHD mixed convection stagnation-point flow of a nanofluid over a vertical permeable surface: a comprehensive report of dual solutions. Heat and Mass Transfer, 2014, 50, 639-650.	2.1	33
246	Melting heat transfer in hybrid nanofluid flow along a moving surface. Journal of Thermal Analysis and Calorimetry, 2022, 147, 567-578.	3.6	33
247	Magnetohydrodynamic and viscous dissipation effects on radiative heat transfer of non-Newtonian fluid flow past a nonlinearly shrinking sheet: Reiner–Philippoff model. AEJ - Alexandria Engineering Journal, 2022, 61, 7605-7617.	6.4	33
248	Inspection of TiO2-CoFe2O4 nanoparticles on MHD flow toward a shrinking cylinder with radiative heat transfer. Journal of Molecular Liquids, 2022, 361, 119615.	4.9	33
249	Fluid–structure interaction analysis of flow and heat transfer characteristics around a flexible microcantilever in a fluidic cell. International Journal of Heat and Mass Transfer, 2010, 53, 1646-1653.	4.8	32
250	Flow and heat transfer at a stagnation-point over an exponentially shrinking vertical sheet with suction. International Journal of Thermal Sciences, 2014, 75, 164-170.	4.9	32
251	Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. Journal of Thermal Analysis and Calorimetry, 2019, 135, 283-303.	3.6	32
252	Flow and heat transfer past a permeable power-law deformable plate with orthogonal shear in a hybrid nanofluid. AEJ - Alexandria Engineering Journal, 2020, 59, 1869-1879.	6.4	32

#	Article	IF	CITATIONS
253	Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects. Neural Computing and Applications, 2022, 34, 3783-3794.	5.6	32
254	MHD flow and heat transfer of a hybrid nanofluid past a nonlinear surface stretching/shrinking with effects of thermal radiation and suction. Chinese Journal of Physics, 2022, 79, 13-27.	3.9	32
255	MHD stagnation-point flow of nanofluid due to a shrinking sheet with melting, viscous dissipation and Joule heating effects. AEJ - Alexandria Engineering Journal, 2022, 61, 12661-12672.	6.4	32
256	Boundary Layer Stagnation-Point Flow Toward a Stretching/Shrinking Sheet in a Nanofluid. Journal of Heat Transfer, 2013, 135, .	2.1	31
257	Natural convection in a partially heated wavy cavity filled with a nanofluid using Buongiorno's nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 924-940.	2.8	31
258	Natural convective heat transfer through two entrapped triangular cavities filled with a nanofluid: Buongiorno's mathematical model. International Journal of Mechanical Sciences, 2017, 133, 484-494.	6.7	31
259	Boundary layer flow and heat transfer past a permeable shrinking surface embedded in a porous medium with a second-order slip: A stability analysis. Applied Thermal Engineering, 2017, 115, 1407-1411.	6.0	31
260	Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suction effect. Results in Physics, 2018, 9, 1335-1344.	4.1	31
261	Merkin and Needham wall jet problem for hybrid nanofluids with thermal energy. European Journal of Mechanics, B/Fluids, 2020, 83, 195-204.	2.5	31
262	Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis. European Journal of Mechanics, B/Fluids, 2022, 94, 121-127.	2.5	31
263	Fully Developed Forced Convection in a Parallel Plate Channel with a Centered Porous Layer. Transport in Porous Media, 2012, 93, 179-201.	2.6	30
264	Unsteady mixed convection flow of a nanofluid near orthogonal stagnation point on a vertical permeable surface. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 226-237.	2.5	30
265	Mixed convection flow near a non-orthogonal stagnation point towards a stretching vertical plate. International Journal of Heat and Mass Transfer, 2007, 50, 4855-4863.	4.8	29
266	Dual solutions in mixed convection boundary layer flow of micropolar fluids. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1324-1333.	3.3	29
267	Mixed convection boundary layer flow over a horizontal circular cylinder with Newtonian heating. Heat and Mass Transfer, 2010, 46, 1411-1418.	2.1	29
268	Boundary layer flow and heat transfer over an exponentially shrinking vertical sheet with suction. International Journal of Thermal Sciences, 2013, 64, 264-272.	4.9	29
269	Stagnation point flow toward a stretching/shrinking sheet with a convective surface boundary condition. Journal of the Franklin Institute, 2013, 350, 2736-2744.	3.4	29
270	Oblique stagnation-point flow of a nanofluid past a shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 189-213.	2.8	29

#	Article	IF	Citations
271	A Stability Analysis of Solutions in Boundary Layer Flow and Heat Transfer of Carbon Nanotubes over a Moving Plate with Slip Effect. Energies, 2018, 11, 3243.	3.1	29
272	Stability Analysis of Mixed Convection Flow towards a Moving Thin Needle in Nanofluid. Applied Sciences (Switzerland), 2018, 8, 842.	2.5	29
273	Effect of solid-to-fluid conductivity ratio on mixed convection and entropy generation of a nanofluid in a lid-driven enclosure with a thick wavy wall. International Journal of Heat and Mass Transfer, 2018, 127, 885-900.	4.8	29
274	Non-Darcy mixed convection of hybrid nanofluid with thermal dispersion along a vertical plate embedded in a porous medium. International Communications in Heat and Mass Transfer, 2020, 118, 104866.	5.6	29
275	Thermal Marangoni Flow Past a Permeable Stretching/Shrinking Sheet in a Hybrid Cu-Al2O3/Water Nanofluid. Sains Malaysiana, 2020, 49, 211-222.	0.5	29
276	Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder. International Communications in Heat and Mass Transfer, 2022, 134, 106020.	5.6	29
277	Semi-analytical solution for the flow of a nanofluid over a permeable stretching/shrinking sheet with velocity slip using Buongiorno's mathematical model. European Journal of Mechanics, B/Fluids, 2016, 58, 39-49.	2.5	28
278	Stagnation-point flow past a shrinking sheet in a nanofluid. Open Physics, 2011, 9, .	1.7	27
279	Numerical Study of Mixed Convection Heat Transfer of a Nanofluid in an Eccentric Annulus. Numerical Heat Transfer; Part A: Applications, 2014, 65, 84-105.	2.1	27
280	Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet. Chinese Journal of Physics, 2017, 55, 2081-2091.	3.9	27
281	Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. European Physical Journal Plus, 2020, 135, 1.	2.6	27
282	Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid. Communications in Nonlinear Science and Numerical Simulation, 2017, 43, 1-13.	3.3	26
283	Effects of uniform magnetic field on the natural convection of Cu–water nanofluid in a triangular cavity. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 334-357.	2.8	26
284	Marangoni natural convection in a cubical cavity filled with a nanofluid. Journal of Thermal Analysis and Calorimetry, 2019, 135, 357-369.	3.6	26
285	Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface. Mathematics, 2021, 9, 538.	2.2	26
286	Symmetrical solutions of hybrid nanofluid stagnation-point flow in a porous medium. International Communications in Heat and Mass Transfer, 2022, 130, 105804.	5.6	26
287	MHD Natural Convective Flow in an Isosceles Triangular Cavity Filled with Porous Medium due to Uniform/Non-Uniform Heated Side Walls. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 919-928.	1.5	25
288	Natural convection in a triangular cavity filled with a micropolar fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 504-515.	2.8	25

#	Article	IF	Citations
289	MHD-mixed convection flow in a lid-driven trapezoidal cavity under uniformly/non-uniformly heated bottom wall. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1231-1248.	2.8	25
290	Natural convection of an alumina-water nanofluid inside an inclined wavy-walled cavity with a non-uniform heating using Tiwari and Das' nanofluid model. Applied Mathematics and Mechanics (English Edition), 2018, 39, 1425-1436.	3.6	25
291	Natural convection in a rectangular cavity filled with nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1410-1432.	2.8	25
292	A dissipative particle dynamics two-component nanofluid heat transfer model: Application to natural convection. International Journal of Heat and Mass Transfer, 2019, 133, 1086-1098.	4.8	25
293	Mixed Convective Flow and Heat Transfer of a Dual Stratified Micropolar Fluid Induced by a Permeable Stretching/Shrinking Sheet. Entropy, 2019, 21, 1162.	2.2	25
294	Mixed convection stagnation-point flow of Cross fluid over a shrinking sheet with suction and thermal radiation. Physica A: Statistical Mechanics and Its Applications, 2022, 585, 126398.	2.6	25
295	Mixed convection boundary layer flow over a vertical surface embedded in a thermally stratified porous medium. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2355-2358.	2.1	24
296	MHD flow and heat transfer over stretching/shrinking sheets with external magnetic field, viscous dissipation and Joule effects. Canadian Journal of Chemical Engineering, 2012, 90, 1336-1346.	1.7	24
297	Boundary layer flow past a permeable shrinking sheet in a micropolar fluid with a second order slip flow model. European Journal of Mechanics, B/Fluids, 2014, 48, 115-122.	2.5	24
298	Unsteady MHD rear stagnation-point flow over off-centred deformable surfaces. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1554-1570.	2.8	24
299	Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model. Physics of Fluids, 2018, 30, .	4.0	24
300	Analysis of heat transfer in nanofluid past a convectively heated permeable stretching/shrinking sheet with regression and stability analyses. Results in Physics, 2018, 10, 395-405.	4.1	24
301	Thermogravitational Convection of Hybrid Nanofluid in a Porous Chamber with a Central Heat-Conducting Body. Symmetry, 2020, 12, 593.	2.2	24
302	Hybrid nanofluid flow on a shrinking cylinder with prescribed surface heat flux. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1987-2004.	2.8	24
303	Boundary Layer Flow and Heat Transfer over a Permeable Exponentially Stretching/Shrinking Sheet with Generalized Slip Velocity. Journal of Applied Fluid Mechanics, 2016, 9, 2025-2036.	0.2	24
304	Moving wedge and flat plate in a power-law fluid. International Journal of Non-Linear Mechanics, 2011, 46, 1017-1021.	2.6	23
305	NON-NEWTONIAN POWER-LAW FLUID FLOW PAST A SHRINKING SHEET WITH SUCTION. Chemical Engineering Communications, 2012, 199, 142-150.	2.6	23
306	Constant heat flux solution for mixed convection boundary layer viscoelastic fluid. Heat and Mass Transfer, 2013, 49, 163-171.	2.1	23

#	Article	IF	CITATIONS
307	Mixed Convection Boundary-Layer Flow Along a Vertical Cylinder Embedded in a Porous Medium Filled by a Nanofluid. Transport in Porous Media, 2013, 96, 237-253.	2.6	23
308	Mixed convection flow from a horizontal circular cylinder embedded in a porous medium filled by a nanofluid: Buongiorno–Darcy model. International Journal of Thermal Sciences, 2014, 84, 21-33.	4.9	23
309	Natural Convection Boundary Layer Flow over a Horizontal Plate Embedded in a Porous Medium Saturated with a Nanofluid: Case of Variable Thermophysical Properties. Transport in Porous Media, 2015, 107, 153-170.	2.6	23
310	Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid. International Journal of Mechanical Sciences, 2017, 131-132, 663-671.	6.7	23
311	Entropy generation analysis for radiative heat transfer to Bödewadt slip flow subject to strong wall suction. European Journal of Mechanics, B/Fluids, 2018, 72, 179-188.	2.5	23
312	Stagnation point flow and heat transfer past a permeable stretching/shrinking Riga plate with velocity slip and radiation effects. Journal of Zhejiang University: Science A, 2019, 20, 290-299.	2.4	23
313	Numerical modeling of Glauert type exponentially decaying wall jet flows of nanofluids using Tiwari and Das' nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 1010-1038.	2.8	23
314	Flow and heat transfer of MHD dusty hybrid nanofluids over a shrinking sheet. Chinese Journal of Physics, 2022, 77, 1342-1356.	3.9	23
315	Magnetic Impact on the Unsteady Separated Stagnation-Point Flow of Hybrid Nanofluid with Viscous Dissipation and Joule Heating. Mathematics, 2022, 10, 2356.	2.2	23
316	MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. International Journal of Heat and Mass Transfer, 2010, 53, 4506-4510.	4.8	22
317	Effect of an Inserted Porous Layer Located at a Wall of a Parallel Plate Channel on Forced Convection Heat Transfer. Transport in Porous Media, 2013, 98, 35-57.	2.6	22
318	Effects of nanoparticles migration on heat transfer enhancement at film condensation of nanofluids over a vertical cylinder. Advanced Powder Technology, 2016, 27, 1941-1948.	4.1	22
319	Unsteady conjugate natural convection in a porous cavity boarded by two vertical finite thickness walls. International Communications in Heat and Mass Transfer, 2017, 81, 218-228.	5.6	22
320	Three-dimensional mixed convection stagnation-point flow over a permeable vertical stretching/shrinking surface with a velocity slip. Chinese Journal of Physics, 2017, 55, 1865-1882.	3.9	22
321	Nanofluid flow by a permeable stretching/shrinking cylinder. Heat and Mass Transfer, 2020, 56, 547-557.	2.1	22
322	Exact solutions of Stokes' second problem for hybrid nanofluid flow with a heat source. Physics of Fluids, 2021, 33, .	4.0	22
323	Convective Heat Transfer of a Hybrid Nanofluid over a Nonlinearly Stretching Surface with Radiation Effect. Mathematics, 2021, 9, 2220.	2.2	22
324	Influence of MHD Hybrid Ferrofluid Flow on Exponentially Stretching/Shrinking Surface with Heat Source/Sink under Stagnation Point Region. Mathematics, 2021, 9, 2932.	2.2	22

#	Article	IF	CITATIONS
325	Unsteady MHD mixed convection flow of a hybrid nanofluid with thermal radiation and convective boundary condition. Chinese Journal of Physics, 2022, 77, 378-392.	3.9	22
326	Triple-Diffusive Natural Convection in a Square Porous Cavity. Transport in Porous Media, 2016, 111, 59-79.	2.6	21
327	Study of heat transfer in water- Cu nanofluid saturated porous medium through two entrapped trapezoidal cavities under the influence of magnetic field. Journal of Molecular Liquids, 2017, 240, 402-411.	4.9	21
328	A Stability Analysis on Mixed Convection Boundary Layer Flow along a Permeable Vertical Cylinder in a Porous Medium Filled with a Nanofluid and Thermal Radiation. Applied Sciences (Switzerland), 2018, 8, 483.	2.5	21
329	Radiative hybrid nanofluid flow past a rotating permeable stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 914-932.	2.8	21
330	Numerical Computation of Dusty Hybrid Nanofluid Flow and Heat Transfer over a Deformable Sheet with Slip Effect. Mathematics, 2021, 9, 643.	2.2	21
331	Flow, Thermal, Energy Transfer, and Entropy Generation Characteristics Inside Wavy Enclosures Filled With Microstructures. Journal of Heat Transfer, 2007, 129, 1564-1575.	2.1	20
332	Design of a vertical annulus with MHD flow using entropy generation analysis. Thermal Science, 2013, 17, 1013-1022.	1.1	20
333	Mixed convection boundary layer flow past a vertical cone embedded in a porous medium subjected to a convective boundary condition. Propulsion and Power Research, 2016, 5, 118-122.	4.3	20
334	Triple-Diffusive Mixed Convection in a Porous Open Cavity. Transport in Porous Media, 2017, 116, 473-491.	2.6	20
335	Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. International Journal of Heat and Mass Transfer, 2018, 125, 908-919.	4.8	20
336	Stagnation point flow past a stretching/shrinking sheet driven by Arrhenius kinetics. Applied Mathematics and Computation, 2018, 337, 583-590.	2.2	20
337	Impact of heat generation/absorption on the unsteady magnetohydrodynamic stagnation point flow and heat transfer of nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 557-574.	2.8	20
338	Unsteady axisymmetric flow and heat transfer of a hybrid nanofluid over a permeable stretching/shrinking disc. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2005-2021.	2.8	20
339	Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 405-415.	2.5	20
340	Mixed convective stagnation point flow of a hybrid nanofluid toward a vertical cylinder. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3689-3710.	2.8	20
341	Mixed convection hybrid nanofluid flow over an exponentially accelerating surface in a porous media. Neural Computing and Applications, 2021, 33, 15719-15729.	5.6	20
342	Unsteady Magnetohydrodynamics (MHD) Flow of Hybrid Ferrofluid Due to a Rotating Disk. Mathematics, 2022, 10, 1658.	2,2	20

#	Article	IF	Citations
343	Mixed Convection Boundary Layer Flow Near the Stagnation Point on a Vertical Surface Embedded in a Porous Medium with Anisotropy Effect. Transport in Porous Media, 2010, 82, 363-373.	2.6	19
344	Mixed convection boundary layer flow past a vertical flat plate embedded in a non-Darcy porous medium saturated by a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2014, 24, 970-987.	2.8	19
345	Slip effects on the unsteady radiative MHD free convection flow over a moving plate with mass diffusion and heat source. European Physical Journal Plus, 2015, 130, 1.	2.6	19
346	Experimental study on local bond stress-slip relationship in self-compacting concrete. Materials and Structures/Materiaux Et Constructions, 2016, 49, 3693-3711.	3.1	19
347	Double-Diffusive Natural Convection in a Differentially Heated Wavy Cavity Under Thermophoresis Effect. Journal of Thermophysics and Heat Transfer, 2018, 32, 1045-1058.	1.6	19
348	Stability analysis on the stagnation-point flow and heat transfer over a permeable stretching/shrinking sheet with heat source effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2650-2663.	2.8	19
349	Three-Dimensional Magnetohydrodynamic Mixed Convection Flow of Nanofluids over a Nonlinearly Permeable Stretching/Shrinking Sheet with Velocity and Thermal Slip. Applied Sciences (Switzerland), 2018, 8, 1128.	2.5	19
350	MHD stagnation-point flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid with induced magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 1345-1364.	2.8	19
351	Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3497-3513.	2.8	19
352	Non-equilibrium natural convection in a differentially-heated nanofluid cavity partially filled with a porous medium. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2524-2544.	2.8	19
353	Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno's two-component nonhomogeneous nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 448-466.	2.8	19
354	Non-axisymmetric Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4583-4606.	2.8	19
355	UNSTEADY FREE CONVECTION IN A SQUARE POROUS CAVITY SATURATED WITH NANOFLUID: THE CASE OF LOCAL THERMAL NONEQUILIBRIUM AND BUONGIORNO'S MATHEMATICAL MODELS. Journal of Porous Media, 2017, 20, 999-1016.	1.9	19
356	Thermophoresis particle deposition of CoFe ₂ O ₄ -TiO ₂ hybrid nanoparticles on micropolar flow through a moving flat plate with viscous dissipation effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3259-3282.	2.8	19
357	Effect of the source term on steady free convection boundary layer flows over a vertical plate in a porous medium. Part II. Transport in Porous Media, 2007, 67, 189-201.	2.6	18
358	Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater. Journal of Hydrodynamics, 2016, 28, 873-885.	3.2	18
359	Numerical simulation of the stagnation point flow past a permeable stretching/shrinking sheet with convective boundary condition and heat generation. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 348-364.	2.8	18
360	Unsteady general solution for MHD natural convection flow with radiative effects, heat source and shear stress on the boundary. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1266-1281.	2.8	18

#	Article	IF	Citations
361	Cross flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 1295-1319.	2.8	18
362	Unsteady MHD Mixed Convection Flow in Hybrid Nanofluid at Three-Dimensional Stagnation Point. Mathematics, 2021, 9, 549.	2.2	18
363	Unsteady micropolar hybrid nanofluid flow past a permeable stretching/shrinking vertical plate. AEJ - Alexandria Engineering Journal, 2022, 61, 11337-11349.	6.4	18
364	Conjugate free convection from a circular cylinder in a porous medium. International Journal of Heat and Mass Transfer, 1992, 35, 3105-3113.	4.8	17
365	Linear and nonlinear double diffusive convection in a rotating sparsely packed porous layer using a thermal non-equilibrium model. Continuum Mechanics and Thermodynamics, 2009, 21, 317-339.	2.2	17
366	Fully Developed Forced Convection Heat Transfer in a Porous Channel with Asymmetric Heat Flux Boundary Conditions. Transport in Porous Media, 2011, 90, 791-806.	2.6	17
367	Mixed Convection Boundary Layer Flow Embedded in a Thermally Stratified Porous Medium Saturated by a Nanofluid. Advances in Mechanical Engineering, 2013, 5, 121943.	1.6	17
368	Mixed convection stagnation flow towards a vertical shrinking sheet. International Journal of Heat and Mass Transfer, 2014, 73, 839-848.	4.8	17
369	Numerical study of forced convection flow and heat transfer of a nanofluid flowing inside a straight circular pipe filled with a saturated porous medium. European Physical Journal Plus, 2016, 131, 1.	2.6	17
370	Unsteady viscous MHD flow over a permeable curved stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2370-2392.	2.8	17
371	The effect of vertical throughflow on the boundary layer flow of a nanofluid past a stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 1910-1927.	2.8	17
372	A new similarity solution with stability analysis for the three-dimensional boundary layer of hybrid nanofluids. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 809-828.	2.8	17
373	Effect of suction on the stagnation point flow of hybrid nanofluid toward a permeable and vertical Riga plate. Heat Transfer, 2021, 50, 1895-1910.	3.0	17
374	Nanofluid Flow on a Shrinking Cylinder with Al2O3 Nanoparticles. Mathematics, 2021, 9, 1612.	2.2	17
375	Flow and heat transfer over a permeable moving wedge in a hybrid nanofluid with activation energy and binary chemical reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1686-1705.	2.8	17
376	Heat and mass transfer of a hybrid nanofluid flow with binary chemical reaction over a permeable shrinking surface. Chinese Journal of Physics, 2022, 76, 283-298.	3.9	17
377	Conjugate free convection over a vertical slender hollow cylinder embedded in a porous medium. Heat and Mass Transfer, 2000, 36, 375-379.	2.1	16
378	A similarity solution for the flow and heat transfer over a moving permeable flat plate in a parallel free stream. Heat and Mass Transfer, 2011, 47, 1643-1649.	2.1	16

#	Article	IF	Citations
379	Note on Cortell's non-linearly stretching permeable sheet. International Journal of Heat and Mass Transfer, 2012, 55, 5846-5852.	4.8	16
380	Magnetohydrodynamic stagnation point flow toward stretching/shrinking permeable plate in porous medium filled with a nanofluid. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2014, 228, 309-319.	2.5	16
381	Non-alignment stagnation-point flow of a nanofluid past a permeable stretching/shrinking sheet: Buongiorno's model. Scientific Reports, 2015, 5, 14640.	3.3	16
382	Fluid flow driven along microchannel by its upper stretching wall with electrokinetic effects. Applied Mathematics and Mechanics (English Edition), 2018, 39, 395-408.	3.6	16
383	Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk. European Journal of Mechanics, B/Fluids, 2018, 72, 275-292.	2.5	16
384	A study on non-Newtonian transport phenomena in a mixed convection stagnation point flow with numerical simulation and stability analysis. European Physical Journal Plus, 2019, 134, 1.	2.6	16
385	Mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with a second order velocity model. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 75-91.	2.8	16
386	Axisymmetric flow of hybrid nanofluid due to a permeable non-linearly stretching/shrinking sheet with radiation effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 2330-2346.	2.8	16
387	Free Convection Heat Transfer and Entropy Generation in an Odd-Shaped Cavity Filled with a Cu-Al2O3 Hybrid Nanofluid. Symmetry, 2021, 13, 122.	2.2	16
388	Rotating Flow in a Nanofluid with CNT Nanoparticles over a Stretching/Shrinking Surface. Mathematics, 2022, 10, 7.	2.2	16
389	Thermal progress of a non-Newtonian hybrid nanofluid flow on a permeable Riga plate with temporal stability analysis. Chinese Journal of Physics, 2022, 77, 279-290.	3.9	16
390	MHD convective flow adjacent to a vertical surface with prescribed wall heat flux. International Communications in Heat and Mass Transfer, 2009, 36, 554-557.	5.6	15
391	Mixed Convection Boundary Layer Flow Near the Lower Stagnation Point of a Cylinder Embedded in a Porous Medium Using a Thermal Nonequilibrium Model. Journal of Heat Transfer, 2016, 138, .	2.1	15
392	Effects of anisotropic slip on three-dimensional stagnation-point flow past a permeable moving surface. European Journal of Mechanics, B/Fluids, 2017, 65, 515-521.	2.5	15
393	Investigation of enclosure aspect ratio effects on melting heat transfer characteristics of metal foam/phase change material composites. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2994-3011.	2.8	15
394	Second law thermodynamic analysis of thermo-magnetic Jeffery–Hamel dissipative radiative hybrid nanofluid slip flow: existence of multiple solutions. European Physical Journal Plus, 2020, 135, 1.	2.6	15
395	Entropy generation analysis of Falkner–Skan flow of Maxwell nanofluid in porous medium with temperature-dependent viscosity. Pramana - Journal of Physics, 2021, 95, 1.	1.8	15
396	Agrawal flow of a hybrid nanofluid over a shrinking disk. Case Studies in Thermal Engineering, 2021, 25, 100950.	5.7	15

#	Article	IF	CITATIONS
397	MHD hybrid nanofluid flow with convective heat transfer over a permeable stretching/shrinking surface with radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1706-1727.	2.8	15
398	Stagnation point flow of a micropolar fluid filled with hybrid nanoparticles by considering various base fluids and nanoparticle shape factors. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2320-2344.	2.8	15
399	Mixed Convection Boundary Layer Flow over a Permeable Vertical Flat Plate Embedded in an Anisotropic Porous Medium. Mathematical Problems in Engineering, 2010, 2010, 1-12.	1.1	14
400	Mixed Convection Stagnation-Point Flow Over a Vertical Plate with Prescribed Heat Flux Embedded in a Porous Medium: Brinkman-Extended Darcy Formulation. Transport in Porous Media, 2011, 90, 709-719.	2.6	14
401	MHD boundary layer flow due to a moving wedge in a parallel stream with the induced magnetic field. Boundary Value Problems, 2013, 2013, .	0.7	14
402	MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip. Scientific Reports, 2015, 5, 17848.	3.3	14
403	Stagnation point flow and heat transfer over a stretching/shrinking sheet in a viscoelastic fluid with convective boundary condition and partial slip velocity. European Physical Journal Plus, 2015, 130, 1.	2.6	14
404	Axisymmetric stagnation-point flow and heat transfer due to a stretching/shrinking vertical plate with surface second-order velocity slip. Meccanica, 2017, 52, 139-151.	2.0	14
405	Flow and heat transfer past a permeable nonlinearly stretching/shrinking sheet in a nanofluid: A revised model with stability analysis. Journal of Molecular Liquids, 2017, 233, 211-221.	4.9	14
406	Soret and Dufour Effects on Unsteady Boundary Layer Flow and Heat Transfer of Nanofluid Over a Stretching/Shrinking Sheet: A Stability Analysis. Journal of Chemical Engineering & Process Technology, 2017, 08, .	0.1	14
407	Convective heat transfer in a rotating nanofluid cavity with sinusoidal temperature boundary condition. Journal of Thermal Analysis and Calorimetry, 2019, 137, 799-809.	3.6	14
408	Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid. Engineering Science and Technology, an International Journal, 2021, 24, 1201-1210.	3.2	14
409	MHD Homogeneous-Heterogeneous Reactions in a Nanofluid due to a Permeable Shrinking Surface. Journal of Applied Fluid Mechanics, 2016, 9, 1073-1079.	0.2	14
410	MHD flow of a nanofluid due to a nonlinear stretching/shrinking sheet with a convective boundary condition: Tiwari–Das nanofluid model. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3233-3258.	2.8	14
411	Aqua Cobalt Ferrite/Mn–Zn Ferrite Hybrid Nanofluid Flow Over a Nonlinearly Stretching Permeable Sheet in a Porous Medium. Journal of Nanofluids, 2022, 11, 383-391.	2.7	14
412	Unsteady stagnation point flow past a permeable stretching/shrinking Riga plate in Al ₂ O ₃ -Cu/H ₂ O hybrid nanofluid with thermal radiation. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 2640-2658.	2.8	14
413	Hybrid nanofluid stagnation point flow past a slip shrinking Riga plate. Chinese Journal of Physics, 2022, 78, 180-193.	3.9	14
414	CONJUGATE NATURAL CONVECTION FROM A HORIZONTAL CIRCULAR CYLINDER. Numerical Heat Transfer; Part A: Applications, 1994, 25, 347-361.	2.1	13

#	Article	IF	CITATIONS
415	Effects of wall conduction on natural convection in a porous triangular enclosure. Acta Mechanica, 2008, 200, 155-165.	2.1	13
416	Dual solutions in MHD flow on a nonlinear porous shrinking sheet in a viscous fluid. Boundary Value Problems, 2013, 2013, .	0.7	13
417	Mixed Convection Boundary Layer Flow over a Moving Vertical Flat Plate in an External Fluid Flow with Viscous Dissipation Effect. PLoS ONE, 2013, 8, e60766.	2.5	13
418	Unsteady flow and heat transfer past a permeable stretching/shrinking sheet in a nanofluid: A revised model with stability and regression analyses. Journal of Molecular Liquids, 2018, 261, 550-564.	4.9	13
419	Natural Convection in a Square Inclined Cavity Filled with a Porous Medium with Sinusoidal Temperature Distribution on Both Side Walls. Transport in Porous Media, 2019, 130, 391-404.	2.6	13
420	Impacts of Non-Uniform Border Temperature Variations on Time-Dependent Nanofluid Free Convection within a Trapezium: Buongiorno's Nanofluid Model. Energies, 2019, 12, 1461.	3.1	13
421	Three-dimensional flow of radiative hybrid nanofluid past a permeable stretching/shrinking sheet with homogeneous-heterogeneous reaction. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 568-588.	2.8	13
422	Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects. Mathematics, 2021, 9, 2330.	2.2	13
423	Unsteady hybrid nanofluid flow on a stagnation point of a permeable rigid surface. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202000193.	1.6	13
424	MHD Mixed Convection Hybrid Nanofluids Flow over a Permeable Moving Inclined Flat Plate in the Presence of Thermophoretic and Radiative Heat Flux Effects. Mathematics, 2022, 10, 1164.	2.2	13
425	Combined free and forced convection flow past a vertial porous plate. International Journal of Energy Research, 1981, 5, 215-226.	4.5	12
426	Forced convection heat transfer inside an anisotropic porous channel with oblique principal axes: Effect of viscous dissipation. International Journal of Thermal Sciences, 2010, 49, 1984-1993.	4.9	12
427	Boundary Layer Flow and Heat Transfer with Variable Fluid Properties on a Moving Flat Plate in a Parallel Free Stream. Journal of Applied Mathematics, 2012, 2012, 1-10.	0.9	12
428	Free- and Mixed-Convection Flow Past a Horizontal Surface in a Nanofluid. Journal of Thermophysics and Heat Transfer, 2012, 26, 375-382.	1.6	12
429	Heat transfer for boundary layers with cross flow. Chinese Physics B, 2014, 23, 024701.	1.4	12
430	Axisymmetric stagnation point flow and heat transfer towards a permeable moving flat plate with surface slip condition. Applied Mathematics and Computation, 2014, 233, 139-151.	2,2	12
431	Numerical solutions of non-alignment stagnation-point flow and heat transfer over a stretching/shrinking surface in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1747-1767.	2.8	12
432	Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating. Heat and Mass Transfer, 2016, 52, 1909-1921.	2.1	12

#	Article	IF	CITATIONS
433	Nanoparticle migration effects at film boiling of nanofluids over a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 471-485.	2.8	12
434	Exact analysis of the transient free convection flow of nanofluids between two vertical parallel plates in the presence of radiation. Canadian Journal of Chemical Engineering, 2017, 95, 2186-2198.	1.7	12
435	Axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid using Tiwari and Das model. Scientific Reports, 2017, 7, 40299.	3.3	12
436	Mixed Convection and Entropy Generation of an Ag-Water Nanofluid in an Inclined L-Shaped Channel. Energies, 2019, 12, 1150.	3.1	12
437	Flow and heat transfer past a permeable stretching/shrinking sheet in Cuâ^'Al2O3/water hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 1197-1222.	2.8	12
438	Free convection of a hybrid nanofluid past a vertical plate embedded in a porous medium with anisotropic permeability. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 4083-4101.	2.8	12
439	Polarization force and geothermal viscosity driven unsteady Bödewadt transport phenomenon over a ferrofluid saturated disk. Physica Scripta, 2021, 96, 015202.	2.5	12
440	MHD stagnation-point flow of hybrid nanofluid with convective heated shrinking disk, viscous dissipation and Joule heating effects. Neural Computing and Applications, 2022, 34, 17601-17613.	5.6	12
441	THE CHENG-MINKOWYCZ PROBLEM FOR THE TRIPLE-DIFFUSIVE NATURAL CONVECTION BOUNDARY LAYER FLOW PAST A VERTICAL PLATE IN A POROUS MEDIUM. Journal of Porous Media, 2013, 16, 637-646.	1.9	11
442	Magnetohydrodynamic effects on flow structures and heat transfer over two cylinders wrapped with a porous layer in side. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1416-1432.	2.8	11
443	Mixed convection non-axisymmetric Homann stagnation-point flow. Journal of Fluid Mechanics, 2017, 812, 418-434.	3.4	11
444	Transient two-dimensional natural convection flow of a nanofluid past an isothermal vertical plate using Buongiorno's model. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 23-47.	2.8	11
445	Flow and heat transfer of couple stress fluid in a vertical channel in the presence of heat source/sink. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 795-819.	2.8	11
446	Boundary layer flow of a dusty fluid over a permeable shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 758-772.	2.8	11
447	Boundary layer flow of nanofluid over a moving surface in a flowing fluid using revised model with stability analysis. International Journal of Mechanical Sciences, 2017, 131-132, 1073-1081.	6.7	11
448	MHD natural convection in a square porous cavity filled with a water-based magnetic fluid in the presence of geothermal viscosity. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2111-2131.	2.8	11
449	Effects of heat generation/absorption in the Jeffrey fluid past a permeable stretching/shrinking disc. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	1.6	11
450	Thermal Convection of Nanoliquid in a Double-Connected Chamber. Nanomaterials, 2020, 10, 588.	4.1	11

#	Article	IF	CITATIONS
451	Flow and Heat Transfer Past a Stretching/Shrinking Sheet Using Modified Buongiorno Nanoliquid Model. Mathematics, 2021, 9, 3047.	2.2	11
452	Dual Solutions in Magnetohydrodynamic Stagnation-Point Flow and Heat Transfer Over a Shrinking Surface With Partial Slip. Journal of Heat Transfer, 2014, 136 , .	2.1	10
453	Analysis of Fully Developed Opposing Mixed Convection Flow in an Inclined Channel Filled by a Nanofluid. Journal of Heat Transfer, 2014, 136, .	2.1	10
454	Stagnation point flow and heat transfer over a non-linearly moving flat plate in a parallel free stream with slip. Communications in Nonlinear Science and Numerical Simulation, 2014, 19, 1822-1835.	3.3	10
455	Boundary-Layer Flow and Heat Transfer of Nanofluids over a Permeable Moving Surface in the Presence of a Coflowing Fluid. Advances in Mechanical Engineering, 2014, 6, 521236.	1.6	10
456	Stagnation Point Flow of a Micropolar Fluid over a Stretching/Shrinking Sheet with Second-Order Velocity Slip. Journal of Aerospace Engineering, 2016, 29, .	1.4	10
457	Lie group symmetry method for MHD double-diffusive convection from a permeable vertical stretching/shrinking sheet. Computers and Mathematics With Applications, 2016, 71, 1679-1693.	2.7	10
458	Influence of temperature and magnetic field on the oblique stagnation-point flow for a nanofluid past a vertical stretching/shrinking sheet. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2874-2894.	2.8	10
459	MHD stagnation-point flow and heat transfer of a nanofluid over a stretching/shrinking sheet with melting, convective heat transfer and second-order slip. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2089-2110.	2.8	10
460	Free convection in an inclined cavity filled with a nanofluid and with sinusoidal temperature on the walls. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 4549-4568.	2.8	10
461	Stagnation-Point Flow and Heat Transfer Over an Exponentially Stretching/Shrinking Sheet in Hybrid Nanofluid with Slip Velocity Effect: Stability Analysis. Journal of Physics: Conference Series, 2019, 1366, 012002.	0.4	10
462	Hybrid Nanofluids Flows Determined by a Permeable Power-Law Stretching/Shrinking Sheet Modulated by Orthogonal Surface Shear. Entropy, 2021, 23, 813.	2.2	10
463	Stagnation point flow toward an exponentially shrinking sheet in a hybrid nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1012-1024.	2.8	10
464	Effects of Thermal Radiation on Mixed Convection Flow over a Permeable Vertical Shrinking Flat Plate in an Oldroyd-B Fluid. Sains Malaysiana, 2018, 47, 1069-1076.	0.5	10
465	Radiative heat transfer of Reiner–Philippoff fluid flow past a nonlinearly shrinking sheet: Dual solutions and stability analysis. Chinese Journal of Physics, 2022, 77, 45-56.	3.9	10
466	The Impact of Thermal Radiation on Maxwell Hybrid Nanofluids in the Stagnation Region. Nanomaterials, 2022, $12,1109$.	4.1	10
467	Mixed convection flow near an axisymmetric stagnation point on a vertical cylinder. Journal of Engineering Mathematics, 2009, 64, $1-13$.	1.2	9
468	Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 953-956.	1.4	9

#	Article	IF	Citations
469	On the Temperature Slip Boundary Condition in a Mixed Convection Boundary-Layer Flow in a Porous Medium. Transport in Porous Media, 2012, 94, 133-147.	2.6	9
470	MIXED CONVECTION BOUNDARY LAYER FLOW PAST A HORIZONTAL CIRCULAR CYLINDER EMBEDDED IN A POROUS MEDIUM SATURATED BY A NANOFLUID: BRINKMAN MODEL. Journal of Porous Media, 2013, 16, 445-457.	1.9	9
471	Mixed Convection Heat and Mass Transfer from a Vertical Surface Embedded in a Porous Medium. Transport in Porous Media, 2015, 109, 279-295.	2.6	9
472	Free Convection in a Square Cavity Filled with a Tridisperse Porous Medium. Transport in Porous Media, 2017, 116, 379-392.	2.6	9
473	Fluid-structure interaction analysis of buoyancy-driven fluid and heat transfer through an enclosure with a flexible thin partition. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 2072-2088.	2.8	9
474	Numerical solutions for unsteady boundary layer flow of a dusty fluid past a permeable stretching/shrinking surface with particulate viscous effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1374-1391.	2.8	9
475	Turbulent combined forced and natural convection of nanofluid in a 3D rectangular channel using two-phase model approach. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3247-3257.	3.6	9
476	Unsteady separated stagnation-point flow and heat transfer past a stretching/shrinking sheet in a copper-water nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 2588-2605.	2.8	9
477	Impact of nanoparticles migration on mixed convection and entropy generation of a \$\$hbox {A}_{2}hbox {O}_{3}\$\$–water nanofluid inside an inclined enclosure with wavy side wall. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3205-3221.	3.6	9
478	Investigation of the novelty of latent functionally thermal fluids as alternative to nanofluids in natural convective flows. Scientific Reports, 2020, 10, 20257.	3.3	9
479	Magnetohydrodynamic Flow and Heat Transfer Induced by a Shrinking Sheet. Mathematics, 2020, 8, 1175.	2.2	9
480	Free convective heat transfer efficiency in Al ₂ O ₃ –Cu/water hybrid nanofluid inside a rectotrapezoidal enclosure. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 196-218.	2.8	9
481	Boundary Layer Flow and Heat Transfer past a Permeable Shrinking Sheet in a Nanofluid with Radiation Effect. Advances in Mechanical Engineering, 2012, 4, 340354.	1.6	9
482	THE EFFECTS OF SUCTION ON FORCED CONVECTION BOUNDARY LAYER STAGNATION POINT SLIP FLOW IN A DARCY POROUS MEDIUM TOWARDS A SHRINKING SHEET WITH PRESENCE OF THERMAL RADIATION: A STABILITY ANALYSIS. Journal of Porous Media, 2018, 21, 623-636.	1.9	9
483	Stability Analysis of Unsteady MHD Rear Stagnation Point Flow of Hybrid Nanofluid. Mathematics, 2021, 9, 2428.	2.2	9
484	Dusty ferrofluid transport phenomena towards a non-isothermal moving surface with viscous dissipation. Chinese Journal of Physics, 2022, 75, 139-151.	3.9	9
485	Numerical Simulation of Solid and Porous Fins' Impact on Heat Transfer Performance in a Differentially Heated Chamber. Mathematics, 2022, 10, 263.	2.2	9
486	Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet. Chinese Journal of Physics, 2022, 75, 109-119.	3.9	9

#	Article	IF	CITATIONS
487	Insight into threeâ€dimensional flow of three different dynamics of nanofluids subject to thermal radiation: The case of water–cobalt ferrite, water–manganese–zinc ferrite, and water–magnetite. Heat Transfer, 2022, 51, 4434-4450.	3.0	9
488	MHD Flow Towards a Permeable Surface with Prescribed Wall Heat Flux. Chinese Physics Letters, 2009, 26, 014702.	3.3	8
489	Stokes' first problem for micropolar fluids. Fluid Dynamics Research, 2010, 42, 025503.	1.3	8
490	Mixed convection boundary layer flow past a wedge with permeable walls. Heat and Mass Transfer, 2010, 46, 1013-1018.	2.1	8
491	Conjugate thermal and mass diffusion effect on natural convection flow in presence of strong cross magnetic field. International Journal of Heat and Mass Transfer, 2012, 55, 5120-5132.	4.8	8
492	The Non-Alignment Stagnation-Point Flow Towards a Permeable Stretching/Shrinking Sheet in a Nanofluid Using Buongiorno's Model: A Revised Model. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2016, 71, 81-89.	1.5	8
493	Stagnation-point flow towards a stretching/shrinking sheet in a nanofluid using Buongiorno's model. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2017, 231, 172-180.	2.5	8
494	A numerical study of the axisymmetric rotational stagnation point flow impinging radially a permeable stretching/shrinking surface in a nanofluid. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2415-2432.	2.8	8
495	Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate. AIP Conference Proceedings, 2017, , .	0.4	8
496	On the propagation of the non-similar wall jet flows with suction/injection. European Physical Journal Plus, 2019, 134, 1.	2.6	8
497	A numerical study on non-homogeneous model for the conjugate-mixed convection of a Cu-water nanofluid in an enclosure with thick wavy wall. Applied Mathematics and Computation, 2019, 356, 219-234.	2.2	8
498	Thermal convection in a chamber filled with a nanosuspension driven by a chemical reaction using Tiwari and Das' model. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 452-470.	2.8	8
499	Mixed convection of a three-dimensional stagnation point flow on a vertical plate with surface slip in a hybrid nanofluid. Chinese Journal of Physics, 2021, 74, 129-143.	3.9	8
500	Dusty hybrid nanofluid flow over a shrinking sheet with magnetic field effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, ahead-of-print, .	2.8	8
501	MHD Glauert Flow of a Hybrid Nanofluid with Heat Transfer. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 2021, 86, 91-100.	0.6	8
502	Unsteady Flow of a Nanofluid Past a Permeable Shrinking Cylinder using Buongiorno's Model. Sains Malaysiana, 2017, 46, 1667-1674.	0.5	8
503	Effect of convective boundary condition on unsteady flow of CNT-H2O nanofluid towards a stagnation-point on a shrinking/expanding flat sheet. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 0, , 095440892110546.	2.5	8
504	Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two vertical parallel plates. Physics of Fluids, 2022, 34, .	4.0	8

#	Article	IF	CITATIONS
505	Radiation effect on the turbulent compressible boundary layer flow with adverse pressure gradient. Applied Mathematics and Computation, 2017, 299, 153-164.	2.2	7
506	Stagnation point flow of a nanofluid past a non-aligned stretching/shrinking sheet with a second-order slip velocity. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 29, 738-762.	2.8	7
507	MHD mixed convection boundary layer stagnation-point flow on a vertical surface with induced magnetic field. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 4697-4710.	2.8	7
508	Soret and Dufour Effects on Unsteady Boundary Layer Flow and Heat Transfer in Copper-Water Nanofluid Over a Shrinking Sheet with Partial Slip and Stability Analysis. Journal of Nanofluids, 2019, 8, 1601-1608.	2.7	7
509	Numerical Results on Slip Effect over an Exponentially Stretching/Shrinking Cylinder. Mathematics, 2022, 10, 1114.	2.2	7
510	Effects of Magnetic Fields, Coupled Stefan Blowing and Thermodiffusion on Ferrofluid Transport Phenomena. Mathematics, 2022, 10, 1646.	2.2	7
511	Stability Analysis of Unsteady Hybrid Nanofluid Flow over the Falkner-Skan Wedge. Nanomaterials, 2022, 12, 1771.	4.1	7
512	Non-darcy natural convection on a vertical cylinder in a saturated porous medium. Heat and Mass Transfer, 1986, 20, 33-37.	0.2	6
513	Unsteady Mixed Convection Boundary Layer from a Circular Cylinder in a Micropolar Fluid. International Journal of Chemical Engineering, 2010, 2010, 1-10.	2.4	6
514	Reply to the Paper TIPM1512: Note on the "Scaling Transformations for Boundary Layer Flow Near the Stagnation-Point on a Heated Permeable Stretching Surface in a Porous Medium Saturated with a Nanofluid and Heat Generation/Absorption Effects―by E. Magyari. Transport in Porous Media, 2011, 87, 49-51.	2.6	6
515	Similarity Solution of Marangoni Convection Boundary Layer Flow over a Flat Surface in a Nanofluid. Journal of Applied Mathematics, 2013, 2013, 1-8.	0.9	6
516	Unsteady separated stagnation-point flow over a moving porous plate in the presence of a variable magnetic field. European Journal of Mechanics, B/Fluids, 2015, 53, 229-240.	2.5	6
517	Stability of Partial slip, Soret and Dufour effects on unsteady boundary layer flow and heat transfer in Copper-water nanofluid over a stretching/shrinking sheet. Journal of Physics: Conference Series, 2017, 890, 012031.	0.4	6
518	Free convection in wavy porous enclosures with non-uniform temperature boundary conditions filled with a nanofluid: Buongiorno's mathematical model. Thermal Science, 2017, 21, 1183-1193.	1.1	6
519	Flow and heat transfer over a permeable biaxial stretching/shrinking sheet in a nanofluid. Neural Computing and Applications, 2020, 32, 4575-4582.	5.6	6
520	Mixed convection in a chamber saturated with MWCNT-Fe $3O4/w$ ater hybrid nanofluid under the upper wall velocity modulation. European Physical Journal Plus, 2021 , 136 , 1 .	2.6	6
521	MHD stagnation point flow on a shrinking surface with hybrid nanoparticles and melting phenomenon effects. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1728-1741.	2.8	6
522	Stagnation point flow of a second-grade hybrid nanofluid induced by a Riga plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, ahead-of-print, .	2.8	6

#	Article	IF	Citations
523	MHD FLOW AND HEAT TRANSFER OVER A NONLINEARLY STRETCHING SHEET IN POROUS MEDIUM FILLED WITH A NANOFLUID. Special Topics and Reviews in Porous Media, 2014, 5, 13-25.	1.1	6
524	Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid. Maǧallatl^ǧÄmiÊ¿atl^Al-Sulá¹Än QÄbÄ«s Li-l-buḥūṯAl-Ê¿il Wa-al-handasatl^, 2017, 21, 48.	lmi yya tl^ A	l-ʿ a lūm
525	Unsteady axisymmetric radiative Cu-Al2O3/H2O flow over a radially stretching/shrinking surface. Chinese Journal of Physics, 2022, 78, 169-179.	3.9	6
526	Similarity solutions for the mixed convection flow over a vertical plate with thermal radiation. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 149-153.	4.9	5
527	Effect of the Darcy number on the energy flow and operating conditions of a thermoacoustic porous-medium system. International Journal of Heat and Mass Transfer, 2011, 54, 4028-4036.	4.8	5
528	Stagnation-Point Flow and Heat Transfer Towards a Shrinking Sheet with Suction in an Upper Convected Maxwell Fluid. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2013, 68, 693-700.	1.5	5
529	Stagnation point flow, heat transfer and species transfer over a shrinking sheet with coupled Stefan blowing effects from species transfer. AIP Conference Proceedings, 2016, , .	0.4	5
530	Mixed convection flow over a horizontal circular cylinder with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno–Darcy model. Heat and Mass Transfer, 2016, 52, 1983-1991.	2.1	5
531	MHD mixed convection oblique stagnation-point flow on a vertical plate. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 2744-2767.	2.8	5
532	The Mixed Convection Boundary Layer on a Vertical Melting Front in a Non-Darcian Porous Medium. Transport in Porous Media, 2017, 116, 521-532.	2.6	5
533	Two-phase model for mixed convection and flow enhancement of a nanofluid in an inclined channel patterned with heated slip stripes. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3047-3070.	2.8	5
534	Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows. Mathematics, 2021, 9, 448.	2.2	5
535	Numerical simulation of mixed convection in a lid-driven trapezoidal cavity with flexible bottom wall and filled with a hybrid nanofluid. European Physical Journal Plus, 2021, 136, 1.	2.6	5
536	Mixed convection flow of a hybrid nanofluid past a vertical wedge with thermal radiation effect. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 806-824.	2.8	5
537	Thermal radiation on mixed convection heat and mass transfer over a vertical permeable stretching/shrinking sheet with Soret and Dufour effects. Journal of Engineering Mathematics, 2022, 132, 1.	1.2	5
538	Hybrid Carbon Nanotube Flow near the Stagnation Region over a Permeable Vertical Plate with Heat Generation/Absorption. Mathematics, 2021, 9, 2925.	2.2	5
539	Finite Péclet number forced convection past a sphere in a porous medium using a thermal nonequilibrium model. Heat and Mass Transfer, 2008, 44, 1391-1399.	2.1	4
540	Impulsive Falknerâ€Skan flow with constant wall heat flux: revisited. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19, 1008-1037.	2.8	4

#	Article	IF	Citations
541	Two-dimensional oblique stagnation-point flow towards a stretching surface in a viscoelastic fluid. Open Physics, 2011, 9, .	1.7	4
542	Boundary layer flow and heat transfer of a micropolar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction. International Journal of Minerals, Metallurgy and Materials, 2011, 18, 502-507.	4.9	4
543	Mixed Convection Flow Adjacent to a Stretching Vertical Sheet in a Nanofluid. Journal of Applied Mathematics, 2013, 2013, 1-6.	0.9	4
544	Mixed convection flow about a solid sphere with constant heat flux embedded in a porous medium filled by a nanofluid: Buongiorno-Darcy model. , 2014 , , .		4
545	Stability analysis of flow and heat transfer on a permeable moving plate in a co-flowing nanofluid. AIP Conference Proceedings, 2014, , .	0.4	4
546	Influence of self-compacting concrete fresh properties on bond to reinforcement. Materials and Structures/Materiaux Et Constructions, 2015, 48, 1875-1886.	3.1	4
547	Additional results for the problem of MHD boundary-layer flow past a stretching/shrinking surface. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 2283-2294.	2.8	4
548	Boundary Layer Flow Over a Moving Vertical Flat Plate with Convective Thermal Boundary Condition. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39, 1287-1306.	0.9	4
549	Flow and Heat Transfer in a Driven Cavity with Two Cylinders. Journal of Thermophysics and Heat Transfer, 2017, 31, 99-108.	1.6	4
550	Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet. Indian Journal of Physics, 2018, 92, 637-645.	1.8	4
551	Unsteady flow and heat transfer over a permeable stretching/shrinking sheet with generalized slip velocity. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28, 1457-1470.	2.8	4
552	MHD Stagnation-Point Flow of a Nanofluid Past a Stretching Sheet with a Convective Boundary Condition and Radiation Effects. Applied Mechanics and Materials, 2019, 892, 168-176.	0.2	4
553	Magnetohydrodynamics Stagnation-Point Flow of a Nanofluid Past a Stretching/Shrinking Sheet with Induced Magnetic Field: A Revised Model. Symmetry, 2019, 11, 1078.	2.2	4
554	Mixed Convection Boundary Layer Flow on a Vertical Surface in a Saturated Porous Medium: New Perturbation Solutions. Transport in Porous Media, 2019, 128, 741-753.	2.6	4
555	MHD stagnation point flow towards a quadratically stretching/shrinking surface. Journal of Physics: Conference Series, 2019, 1366, 012013.	0.4	4
556	Unsteady mixed convection flow at a three-dimensional stagnation point. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 236-250.	2.8	4
557	Nonhomogeneous model for conjugate mixed convection of nanofluid and entropy generation in an enclosure in presence of inclined magnetic field with Joule heating. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 418-441.	2.8	4
558	Dual similarity solutions because of mixed convective flow of a double-nanoparticles hybrid nanofluid: critical points and stability analysis. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 3319-3342.	2.8	4

#	Article	IF	CITATIONS
559	STEADY DOUBLE-DIFFUSIVE MIXED CONVECTION BOUNDARY LAYER FLOW PAST A VERTICAL FLAT PLATE EMBEDDED IN A POROUS MEDIUM FILLED BY A NANOFLUID USING BUONGIORNO'S MODEL. Journal of Porous Media, 2016, 19, 331-338.	1.9	4
560	NON-SYMMETRIC FLOW OVER A STRETCHING/SHRINKING SURFACE WITH MASS TRANSFER. Mathematical Modelling and Analysis, 2019, 24, 617-634.	1.5	4
561	Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect. Mathematics, 2021, 9, 2681.	2.2	4
562	Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al2O3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer. Mathematics, 2022, 10, 1281.	2.2	4
563	Unsteady mixed convective stagnation point flow of hybrid nanofluid in porous medium. Neural Computing and Applications, 2022, 34, 14699-14715.	5 . 6	4
564	Three-Dimensional Stretching/Shrinking Flow of Hybrid Nanofluid with Slips and Joule Heating. Journal of Thermophysics and Heat Transfer, 2022, 36, 848-857.	1.6	4
565	Three-Dimensional Flow and Heat Transfer Past a Permeable Exponentially Stretching/Shrinking Sheet in a Nanofluid. Journal of Applied Mathematics, 2014, 2014, 1-6.	0.9	3
566	Unsteady three-dimensional flow and heat transfer past a permeable stretching/shrinking surface. AlP Conference Proceedings, 2015 , , .	0.4	3
567	EFFECT OF AN INSERTED POROUS LAYER INTO A CHANNEL ON HEAT TRANSFER AND PRESSURE DROP. Journal of Porous Media, 2016, 19, 65-82.	1.9	3
568	Mixed convection flow, heat transfer, species concentration near the stagnation point on a vertical flat plate with Stefan coupled blowing. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 77-103.	2.8	3
569	Dual solutions of magnetohydrodynamic stagnation point flow and heat transfer of viscoelastic nanofluid over a permeable stretching/shrinking sheet with thermal radiation. Journal of Physics: Conference Series, 2017, 890, 012063.	0.4	3
570	Unsteady stagnation-point flow and heat transfer over an exponential stretching sheet in Copper-water nanofluid with slip velocity effect. Journal of Physics: Conference Series, 2018, 1132, 012029.	0.4	3
571	Non-uniqueness of solutions to a MHD stagnation-point flow over an exponentially permeable stretching/shrinking sheet with velocity slip. Journal of Physics: Conference Series, 2019, 1366, 012040.	0.4	3
572	Numerical results for the classical free convection flow problem in a square porous cavity using spline functions. International Journal of Numerical Methods for Heat and Fluid Flow, 2021, 31, 753-765.	2.8	3
573	Stagnation-Point Flow Past a Permeable Stretching/Shrinking Sheet. Advanced Science Letters, 2017, 23, 11040-11043.	0.2	3
574	Dual solutions on boundary-layer flow over a moving surface in a flowing nanofluid with second-order slip. Thermal Science, 2020, 24, 1117-1129.	1.1	3
575	Nonlinear radiative heat transfer of magnetohydrodynamic non-newtonian fluid flow past a shrinking sheet: Reiner–Philippoff model. Waves in Random and Complex Media, 0, , 1-22.	2.7	3
576	Magnetohydrodynamics unsteady separated stagnationâ€point (USSP) flow of a hybrid nanofluid on a moving plate. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	3

#	Article	IF	Citations
577	Mixed bioconvection stagnation point flow towards a vertical plate in alumina-copper/water. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3413-3438.	2.8	3
578	MHD boundary layer flow of couple-stress fluid over a bidirectional moving surface with non-Fourier heat flux. Journal of Interdisciplinary Mathematics, 2022, 25, 1551-1569.	0.7	3
579	Magnetohydrodynamic flow over a moving plate in a parallel stream with an induced magnetic field. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 397-402.	4.9	2
580	Unsteady Flow of a Power–Law Fluid past a Shrinking Sheet with Mass Transfer. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2012, 67, 65-69.	1.5	2
581	A Further Note on the Unsteady Mixed Convection Boundary Layer in a Porous Medium with Temperature Slip: An Exact Solution. Transport in Porous Media, 2012, 95, 373-375.	2.6	2
582	A Comment on Change of Nusselt Number Sign in a Channel Flow Filled by a Fluid-Saturated Porous Medium with Constant Heat Flux Boundary Conditions. Transport in Porous Media, 2013, 96, 97-103.	2.6	2
583	Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet in a micropolar fluid. Thermal Science, 2013, 17, 525-532.	1.1	2
584	Mixed Convection Stagnation-Point Flow Past a Vertical Flat Plate With a Second Order Slip. Journal of Heat Transfer, 2014, 136, .	2.1	2
585	Boundary layer flow and heat transfer past a moving plate with suction and injection. , 2014, , .		2
586	Unsteady stagnation-point flow past a stretching sheet with suction in a nanofluid using Buongiorno's model. AIP Conference Proceedings, 2014, , .	0.4	2
587	A note on the stagnation-point flow over a permeable shrinking sheet with slip effects. International Communications in Heat and Mass Transfer, 2016, 71, 101-107.	5.6	2
588	Unsteady mixed convection stagnation-point flow over a plate moving along the direction of flow impingement. International Journal of Numerical Methods for Heat and Fluid Flow, 2017, 27, 120-141.	2.8	2
589	Dual Solutions for Opposing Mixed Convection in Porous Media. Journal of Heat Transfer, 2017, 139, .	2.1	2
590	Turbulent natural convection combined with entropy generation in a nanofluid cavity with non-uniformly heated side walls. Journal of Physics: Conference Series, 2019, 1366, 012049.	0.4	2
591	Fluid flow effects on diffusion layer and current density for electrochemical systems. Korean Journal of Chemical Engineering, 2020, 37, 1453-1465.	2.7	2
592	On an equation arising in the boundary-layer flow of stretching/shrinking permeable surfaces. Journal of Engineering Mathematics, 2020, 121, 1-17.	1.2	2
593	Darcy–Boussinesq convective flow in a trapezoidal enclosure with thermal stratification. Journal of Thermal Analysis and Calorimetry, 2021, 145, 3325-3337.	3.6	2
594	Viscous fluids. , 2022, , 23-48.		2

#	Article	IF	Citations
595	Blasius Problem with Generalized Surface Slip Velocity. Journal of Applied Fluid Mechanics, 2016, 9, 1641-1644.	0.2	2
596	Modelling of Stagnation-Point Flow and Diffusion of Chemically Reactive Species Past A Permeable Quadratically Stretching/Shrinking Sheet., 2015,,.		2
597	Stagnation Point Flow Over a Permeable Stretching/Shrinking Sheet with Chemical Reaction and Heat Source/Sink. CMES - Computer Modeling in Engineering and Sciences, 2019, 120, 203-214.	1.1	2
598	Thermogravitational Convective Flow and Energy Transport in an Electronic Cabinet with a Heat-Generating Element and Solid/Porous Finned Heat Sink. Mathematics, 2022, 10, 34.	2.2	2
599	Steady Flow of Burgers' Nanofluids over a Permeable Stretching/Shrinking Surface with Heat Source/Sink. Mathematics, 2022, 10, 1580.	2.2	2
600	Unsteady Separated Stagnation-Point Flow Past a Moving Plate with Suction Effect in Hybrid Nanofluid. Mathematics, 2022, 10, 1933.	2.2	2
601	Mixed convection boundary-layer flow along a vertical flat plate. , 2001, , 45-85.		1
602	Numerical Investigation of Free Convection over a Permeable Vertical Flat Plate Embedded in a Porous Medium with Radiation Effects and Mixed Thermal Boundary Conditions. , 2010, , .		1
603	Non-Darcian Effects on Buoyancy-Induced Heat Transfer in a Partially Divided Square Enclosure with Internal Heat Generation. Transport in Porous Media, 2010, 84, 663-683.	2.6	1
604	FLOW OVER AN UNSTEADY SHRINKING SHEET WITH SUCTION IN A NANOFLUID. International Journal of Modern Physics Conference Series, 2012, 09, 511-519.	0.7	1
605	Numerical solutions of Wang's stretching/shrinking sheet problem for nanofluids. , 2013, , .		1
606	Numerical solutions of three-dimensional boundary layer flow and heat transfer past a permeable shrinking surface in a Cu-water nanofluid. , 2014, , .		1
607	Three-dimensional viscous flow over an unsteady permeable stretching/shrinking sheet. , 2014, , .		1
608	Mixed convection boundary layer flow at the lower stagnation point of a sphere embedded in a porous medium in presence of heat source/sink: Constant heat flux case. , 2014, , .		1
609	Stability solutions on stagnation point flow in Cu-water nanofluid on stretching/shrinking cylinder with chemical reaction and slip effect. Journal of Physics: Conference Series, 2017, 890, 012030.	0.4	1
610	Stability analysis of flow and heat transfer over a permeable stretching/shrinking sheet with internal heat generation and viscous dissipation. Journal of Physics: Conference Series, 2017, 890, 012039.	0.4	1
611	Transient free convection in an inclined square porous cavity filled with a nanofluid using LTNE and Buongiorno's models. MATEC Web of Conferences, 2018, 240, 03014.	0.2	1
612	On an equation arising in natural convection boundary layer flow in a porous medium. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	1

#	Article	IF	CITATIONS
613	Entropy generation of a nanofluid in a porous cavity with sinusoidal temperature at the walls and a heat source bellow. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 23-40.	2.8	1
614	Free convection inside a porous square cavity with convective boundary condition using spline functions. Boundary Value Problems, 2021, 2021, .	0.7	1
615	Dual Solutions of MHD Three-Dimensional Flow Over a Permeable Stretching/Shrinking Surface with Velocity Slip and Thermal Radiation in a Nanofluid. Journal of Computational and Theoretical Nanoscience, 2017, 14, 1644-1652.	0.4	1
616	Ingham Problem for Mixed Convection Flow of a Nanofluid over a Moving Vertical Plate with Suction and Injection Effects. Sains Malaysiana, 2018, 47, 2213-2221.	0.5	1
617	MHD forced convection ow and heat transfer of ferro fluids over a moving at plate with uniform heat flux and second-order slip effects. Scientia Iranica, 2017, .	0.4	1
618	Forced convective MHD flow of Reiner-Philippoff fluid induced by hybrid nanofluid past a nonlinear moving sheet with nonlinear heat sink/source. Waves in Random and Complex Media, 0, , 1-22.	2.7	1
619	Flow over a shrinking sheet containing hybrid nanoparticles with nonlinear thermal radiation and magnetohydrodynamic effects. Waves in Random and Complex Media, 0, , 1-19.	2.7	1
620	Second-Order Correction for Convective Wall Plume in Power-Law Fluids Over an Isothermal Wall. Polymer-Plastics Technology and Engineering, 1992, 31, 157-175.	1.9	0
621	Unsteady viscous flow and heat transfer due to a permeable stretching/shrinking cylinder. , 2013, , .		0
622	Stagnation point flow towards a melting shrinking sheet in an upper convected Maxwell fluid. , 2013, , .		0
623	Unsteady separated stagnation-point flow with suction towards a stretching sheet. , 2014, , .		0
624	Boundary layer flow and heat transfer over a permeable surface moving with exponentially decreasing velocities in a parallel free stream. , 2014, , .		0
625	Numerical solutions of flow and heat transfer on a moving plate in a co-flowing nanofluid. , 2014, , .		0
626	Three-dimensional stagnation point viscous flow on a permeable moving surface with anisotropic slip. AIP Conference Proceedings, 2015, , .	0.4	0
627	Effect of radiation and magnetohydrodynamic free convection boundary layer flow on a solid sphere with Newtonian heating in a micropolar fluid. , 2015, , .		0
628	Unsteady stagnation-point flow and heat transfer past a permeable shrinking sheet in a nanofluid using Buongiorno's model. AIP Conference Proceedings, 2017, , .	0.4	0
629	Flow and heat transfer over a stretching and shrinking sheet with slip and convective boundary condition. AIP Conference Proceedings, 2017, , .	0.4	0
630	Comment on the paper "Hydromagnetic thin film flow of Casson fluid in non-Darcy porous medium with Joule dissipation and Navier's partial slip― Applied Mathematics and Mechanics (English Edition), 2018, 39, 1057-1058.	3.6	0

#	Article	IF	CITATIONS
631	Axisymmetric Powell-Eyring fluid flow over a stretching sheet with a convective boundary condition and suction effects. AIP Conference Proceedings, 2018, , .	0.4	0
632	MHD stagnation point flow over a permeable stretching/shrinking sheet with a heat sink and radiation effects. AIP Conference Proceedings, 2019, , .	0.4	0
633	Natural convection in a porous square cavity filled with a nanofluid: A numerical study using spline functions. Journal of Thermal Analysis and Calorimetry, 0, , 1.	3.6	0
634	Jets. , 2022, , 255-276.		0
635	Micropolar fluids over the moving surface. , 2022, , 225-253.		0
636	Nanofluids., 2022,, 87-112.		0
637	Stretching/shrinking sheets near a stagnation-point flow in viscous fluids. , 2022, , 49-86.		0
638	Stretching/shrinking sheets in nanofluids and hybrid nanofluids. , 2022, , 113-162.		0
639	Mixed convection flow in porous medium. , 2022, , 163-203.		0
640	Comment on the paper "Numerical simulation for heat transfer performance in unsteady flow of Williamson fluid driven by a wedge-geometry― Results in Physics, 2021, 20, 103717.	4.1	0
641	Threeâ€dimensional tilted hydromagnetic natural doubleâ€diffusive convection in a rectangular cuboid filled with nanofluids based on magnetic nanoparticles. Heat Transfer, 2022, 51, 1275-1305.	3.0	0
642	Boundary Layer Flow and Heat Transfer of a Nanofluid Over a Moving Permeable Surface. Advanced Science Letters, 2017, 23, 11153-11157.	0.2	0
643	MIXED CONVECTION BOUNDARY LAYER FLOW OVER A HORIZONTAL FLAT PLATE WITH SUCTION AND VARIABLE HEAT FLUX. JP Journal of Heat and Mass Transfer, 2018, 15, 195-211.	0.2	0
644	Stagnation Point Flow and Heat Transfer Over a Permeable Stretching/Shrinking Sheet with Heat Source/Sink. Mechanisms and Machine Science, 2020, , 189-199.	0.5	0
645	PROFESSOR SOMCHAI WONGWISES ON HIS 60TH BIRTHDAY. Journal of Thermal Engineering, 0, , 438-439.	1.6	0