
Li-Biao Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/271096/publications.pdf Version: 2024-02-01

LI-<u>ΒΙΛΟ Η</u>ΛΝ

#	Article	IF	CITATIONS
1	Copper-Catalyzed Aerobic Oxidative Coupling of Terminal Alkynes with <i>H</i> -Phosphonates Leading to Alkynylphosphonates. Journal of the American Chemical Society, 2009, 131, 7956-7957.	13.7	268
2	Palladium-Catalyzed Hydrophosphorylation of Alkynes via Oxidative Addition of HP(O)(OR)2. Journal of the American Chemical Society, 1996, 118, 1571-1572.	13.7	244
3	Efficient and Selective Nickel-Catalyzed Addition of Hâ^'P(O) and Hâ^'S Bonds to Alkynes. Journal of the American Chemical Society, 2004, 126, 5080-5081.	13.7	220
4	Facile Regio- and Stereoselective Hydrometalation of Alkynes with a Combination of Carboxylic Acids and Group 10 Transition Metal Complexes: Selective Hydrogenation of Alkynes with Formic Acid. Journal of the American Chemical Society, 2011, 133, 17037-17044.	13.7	218
5	Transition metal-catalysed addition reactions of H–heteroatom and inter-heteroatom bonds to carbon–carbon unsaturated linkages via oxidative additions. Chemical Communications, 1999, , 395-402.	4.1	211
6	Transitionâ€Metalâ€Catalyzed Threeâ€Component Difunctionalizations of Alkenes. Chemistry - an Asian Journal, 2018, 13, 2277-2291.	3.3	211
7	C–P Bond-Forming Reactions via C–O/P–H Cross-Coupling Catalyzed by Nickel. Journal of the American Chemical Society, 2015, 137, 1782-1785.	13.7	197
8	Stereospecific Nucleophilic Substitution of Optically Pure <i>H</i> -Phosphinates: A General Way for the Preparation of Chiral P-Stereogenic Phosphine Oxides. Journal of the American Chemical Society, 2008, 130, 12648-12655.	13.7	169
9	Oxidative Addition of HP(O)Ph2to Platinum(0) and Palladium(0) Complexes and Palladium-Catalyzed Regio- and Stereoselective Hydrophosphinylation of Alkynes. Organometallics, 1996, 15, 3259-3261.	2.3	144
10	Efficient Pd-Catalyzed Dehydrogenative Coupling of P(O)H with RSH: A Precise Construction of P(O)–S Bonds. Journal of the American Chemical Society, 2016, 138, 5825-5828.	13.7	130
11	Stereospecific Coupling of <i>H</i> -Phosphinates and Secondary Phosphine Oxides with Amines and Alcohols: A General Method for the Preparation of Optically Active Organophosphorus Acid Derivatives. Journal of Organic Chemistry, 2010, 75, 3890-3892.	3.2	121
12	Metal-catalyzed additions of H–P(O) bonds to carbon–carbon unsaturated bonds. Journal of Organometallic Chemistry, 2011, 696, 130-140.	1.8	121
13	Retention of Configuration on the Oxidative Addition of Pâ [°] 'H Bond to Platinum (0) Complexes:Â The First Straightforward Synthesis of Enantiomerically Pure P-Chiral Alkenylphosphinates via Palladium-Catalyzed Stereospecific Hydrophosphinylation of Alkynes. Journal of the American Chemical Society. 2002, 124, 3842-3843.	13.7	120
14	Stereospecific Addition of Hâ^'P Bond to Alkenes:Â A Simple Method for the Preparation of (RP)-Phenylphosphinates. Journal of Organic Chemistry, 2005, 70, 10121-10123.	3.2	119
15	Air-Inducedanti-Markovnikov Addition of Secondary Phosphine Oxides and H-Phosphinates to Alkenes. Organic Letters, 2007, 9, 53-55.	4.6	118
16	High Reactivity of a Five-Membered Cyclic Hydrogen Phosphonate Leading to Development of Facile Palladium-Catalyzed Hydrophosphorylation of Alkenes. Journal of the American Chemical Society, 2000, 122, 5407-5408.	13.7	117
17	Rhodium-Catalyzed Hydrophosphorylation of Terminal Alkynes Leading to Highly Selective Formation of (E)-Alkenylphosphonates: Complete Reversal of Regioselectivity to the Palladium-Catalyzed Counterpart. Angewandte Chemie - International Edition, 2001, 40, 1929-1932.	13.8	109
18	Rhodium-Catalyzed Regio- and Stereoselective Addition of Diphenylphosphine Oxide to Alkynes. Journal of Organic Chemistry, 2001, 66, 5929-5932.	3.2	108

#	Article	IF	CITATIONS
19	Hydrophosphorylation of Alkynes Catalyzed by Palladium: Generality and Mechanism. Journal of the American Chemical Society, 2018, 140, 3139-3155.	13.7	107
20	Conversion of triphenylphosphine oxide to organophosphorus via selective cleavage of C-P, O-P, and C-H bonds with sodium. Communications Chemistry, 2020, 3, .	4.5	102
21	Phosphinic Acid Induced Reversal of Regioselectivity in Pd-Catalyzed Hydrophosphinylation of Alkynes with Ph2P(O)H. Angewandte Chemie - International Edition, 1998, 37, 94-96.	13.8	94
22	Palladium-Catalyzed Asymmetric Hydrophosphorylation of Norbornenes. Organic Letters, 2006, 8, 2099-2101.	4.6	85
23	Nickel-catalysed P–C bond formation via P–H/C–CN cross coupling reactions. Chemical Communications, 2015, 51, 7540-7542.	4.1	81
24	Palladium-catalyzed asymmetric hydrophosphorylation of alkynes: facile access to <i>P</i> -stereogenic phosphinates. Chemical Science, 2020, 11, 7451-7455.	7.4	76
25	Selective Homo- and Heterodehydrocouplings of Phosphines Catalyzed by Rhodium Phosphido Complexes. Journal of the American Chemical Society, 2006, 128, 13698-13699.	13.7	74
26	Efficient nickel-catalyzed phosphinylation of C–S bonds forming C–P bonds. Chemical Communications, 2016, 52, 12233-12236.	4.1	74
27	Selective PP and POP Bond Formations through Copper atalyzed Aerobic Oxidative Dehydrogenative Couplings of Hâ€Phosphonates. Angewandte Chemie - International Edition, 2010, 49, 6852-6855.	13.8	73
28	Dehydrogenative coupling involving P(O)–H bonds: a powerful way for the preparation of phosphoryl compounds. Dalton Transactions, 2016, 45, 1843-1849.	3.3	71
29	Palladium-Catalyzed Dehydrogenative Cis Double Phosphorylation of Alkynes with <i>H</i> -Phosphonate Leading to (<i>Z</i>)-Bisphosphoryl-1-alkenes. Journal of the American Chemical Society, 2008, 130, 2752-2753.	13.7	64
30	Nickel-Catalyzed Phosphorylation of Phenol Derivatives via C–O/P–H Cross-Coupling. Journal of Organic Chemistry, 2016, 81, 3911-3916.	3.2	64
31	Optically Active H-Phosphinates and Their Stereospecific Transformations into Optically Active P-Stereogenic Organophosphoryl Compounds. Synlett, 2015, 26, 1153-1163.	1.8	59
32	Palladium-Catalyzed Insertion of Isocyanides into P(O)â^'H Bonds:Â Selective Formation of Phosphinoyl Imines and Bisphosphinoylaminomethanes. Journal of the American Chemical Society, 2006, 128, 7422-7423.	13.7	58
33	Nickel-Catalyzed Addition of P(O)â^'H Bonds to Propargyl Alcohols:  One-Pot Generation of Phosphinoyl 1,3-Butadienes. Organic Letters, 2005, 7, 2909-2911.	4.6	57
34	Systematic study for the stereochemistry of the Atherton–Todd reaction. Tetrahedron, 2013, 69, 9373-9380.	1.9	56
35	Stereospecific Halogenation of P(O)-H Bonds with Copper(II) Chloride Affording Optically Active Z ₁ Z ₂ P(O)Cl. Journal of Organic Chemistry, 2010, 75, 7924-7927.	3.2	55
36	A BrÃ,nsted acid-catalyzed generation of palladium complexes: efficient head-to-tail dimerization of alkynes. Chemical Communications, 2013, 49, 7498.	4.1	51

#	Article	IF	CITATIONS
37	Chloroform-based Atherton–Todd-type reactions of alcohols and thiols with secondary phosphine oxides generating phosphinothioates and phosphinates. RSC Advances, 2015, 5, 71544-71546.	3.6	50
38	Alcohol-based Michaelis–Arbuzov reaction: an efficient and environmentally-benign method for C–P(O) bond formation. Green Chemistry, 2018, 20, 3408-3413.	9.0	47
39	Iron-catalyzed clean dehydrogenative coupling of alcohols with P(O)–H compounds: a new protocol for ROH phosphorylation. Dalton Transactions, 2016, 45, 14893-14897.	3.3	45
40	Palladium-catalyzed dehydrogenative coupling of terminal alkynes with secondary phosphine oxides. Chemical Communications, 2015, 51, 3549-3551.	4.1	43
41	Convenient synthesis of allenylphosphoryl compounds via Cu-catalysed couplings of P(O)H compounds with propargyl acetates. Chemical Communications, 2016, 52, 6451-6454.	4.1	43
42	Copperâ€Catalyzed Selective Semihydrogenation of Terminal Alkynes with Hypophosphorous Acid. Advanced Synthesis and Catalysis, 2014, 356, 765-769.	4.3	42
43	Nickel-catalyzed (E)-selective semihydrogenation of internal alkynes with hypophosphorous acid. Journal of Organometallic Chemistry, 2014, 749, 51-54.	1.8	41
44	Transition-Metal-Free C–P Bond Formation via Decarboxylative Phosphorylation of Cinnamic Acids with P(O)H Compounds. Journal of Organic Chemistry, 2018, 83, 4190-4196.	3.2	40
45	Photoredox-catalyzed decarboxylative alkylation/cyclization of alkynylphosphine oxides: a metal- and oxidant-free method for accessing benzo[<i>b</i>]phosphole oxides. Chemical Communications, 2019, 55, 233-236.	4.1	40
46	Mechanistic Studies on the Palladium-Catalyzed Cross Dehydrogenative Coupling of P(O)–H Compounds with Terminal Alkynes: Stereochemistry and Reactive Intermediates. Organometallics, 2015, 34, 5095-5098.	2.3	34
47	Stereospecific Preparations of <i>P</i> -Stereogenic Phosphonothioates and Phosphonoselenoates. Journal of Organic Chemistry, 2016, 81, 6843-6847.	3.2	34
48	Ready Approach to Organophosphines from ArCl via Selective Cleavage of C–P Bonds by Sodium. Organometallics, 2020, 39, 2682-2694.	2.3	34
49	A new oxapalladacycle generated via ortho C–H activation of phenylphosphinic acid: an efficient catalyst for Markovnikov-type additions of E–H bonds to alkynes. Chemical Communications, 2011, 47, 2333-2335.	4.1	32
50	An efficient base-catalyzed double addition of H-phosphine oxides to alkynes. Tetrahedron Letters, 2016, 57, 3382-3384.	1.4	32
51	Air-induced double addition of P(O)–H bonds to alkynes: a clean and practical method for the preparation of 1,2-bisphosphorylethanes. Green Chemistry, 2017, 19, 1502-1506.	9.0	32
52	Highly Selective 1,4―and 1,6â€Addition of P(O)H Compounds to <i>p</i> â€Quinones: A Divergent Method for the Synthesis of <i>C</i> ―and <i>O</i> â€Phosphoryl Hydroquinone Derivatives. Chemistry - A European Journal, 2012, 18, 16902-16910.	3.3	31
53	Efficient and selective hydrogenation of C–O bonds with a simple sodium formate catalyzed by nickel. Chemical Communications, 2018, 54, 1521-1524.	4.1	31
54	Copper(II) Acetate atalyzed Synthesis of Phosphorylated Pyridines via Denitrogenative Câ^'P Coupling between Pyridotriazoles and P(O)H Compounds. Advanced Synthesis and Catalysis, 2018, 360, 4252-4258.	4.3	31

#	Article	IF	CITATIONS
55	Palladiumâ€Catalyzed Direct Decarbonylative Phosphorylation of Benzoic Acids with P(O)–H Compounds. European Journal of Organic Chemistry, 2020, 2020, 1148-1153.	2.4	31
56	Nickel-Catalyzed Direct C–H/C–O Cross Couplings Generating Fluorobenzenes and Heteroarenes. Organic Letters, 2015, 17, 812-815.	4.6	30
57	Stereogenic Phosphorusâ€Induced Diastereoselective Formation of Chiral Carbon during Nucleophilic Addition of Chiral HP Species to Aldehydes or Ketones. Chemistry - an Asian Journal, 2014, 9, 1329-1333.	3.3	28
58	Silver-Free Direct Synthesis of Alkynylphosphine Oxides via <i>sp</i> C–H/P(O)–H Dehydrogenative Coupling Catalyzed by Palladium. Organic Letters, 2017, 19, 4692-4695.	4.6	28
59	Copperâ€Catalyzed Dehydrative Cyclization of 1â€{2â€Hydroxyphenyl)propargyl Alcohols with P(O)H Compounds for the Synthesis of 2â€Phosphorylmethylbenzofurans. Advanced Synthesis and Catalysis, 2018, 360, 334-345.	4.3	28
60	Crossâ€Đehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. ChemSusChem, 2020, 13, 4776-4794.	6.8	28
61	Efficient Asymmetric Hydrogenation of αâ€Acetamidocinnamates through a Simple, Readily Available Monodentate Chiral <i>H</i> â€Phosphinate. Chemistry - A European Journal, 2014, 20, 3631-3635.	3.3	27
62	Nickel atalyzed CO/CH Cross oupling Reactions for CC Bond Formation. Angewandte Chemie - International Edition, 2015, 54, 8600-8602.	13.8	27
63	General Oxidative Aryl C–P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. Organic Letters, 2019, 21, 3198-3203.	4.6	27
64	Highly Selective Markovnikov Addition of Hypervalent <i>H</i> -Spirophosphoranes to Alkynes Mediated by Palladium Acetate: Generality and Mechanism. Bulletin of the Chemical Society of Japan, 2010, 83, 1086-1099.	3.2	26
65	Stereoselective Synthesis of Phosphoryl‣ubstituted Phenols. Advanced Synthesis and Catalysis, 2014, 356, 781-794.	4.3	26
66	Direct Amidation of Carboxylic Acids with Tertiary Amines: Amide Formation over Copper Catalysts through C–N Bond Cleavage. European Journal of Organic Chemistry, 2014, 2014, 4244-4247.	2.4	26
67	Radical Hydrophosphorylation of Alkynes with R ₂ P(O)H Generating Alkenylphosphine Oxides: Scope and Limitations. Journal of Organic Chemistry, 2018, 83, 8743-8749.	3.2	26
68	Addition of optically pure H-phosphinate to ketones: selectivity, stereochemistry and mechanism. Organic and Biomolecular Chemistry, 2014, 12, 9457-9465.	2.8	25
69	Diastereoselective Hydrolysis of Asymmetric P–Cl Species and Synthesis of Optically Pure (<i>R</i> _P)â€{–)â€Menthyl Hâ€Phenylphosphinate. European Journal of Organic Chemistry, 2015, 2015, 2342-2345.	, 2.4	25
70	Nickel-catalyzed phosphorylation of aryl triflates with P(O)H compounds. Journal of Organometallic Chemistry, 2016, 820, 120-124.	1.8	25
71	Cu-Catalyzed hydrophosphorylative ring opening of propargyl epoxides: highly selective access to 4-phosphoryl 2,3-allenols. Chemical Communications, 2016, 52, 11959-11962.	4.1	25
72	Transition Metal-Catalyzed Efficient and Green Transformations of P(O)-H Compounds to Functional Organophosphorus Compounds. Mini-Reviews in Medicinal Chemistry, 2013, 13, 824-835.	2.4	25

#	Article	IF	CITATIONS
73	Ph ₃ P-mediated highly selective C(α)–P coupling of quinone monoacetals with R ₂ P(O)H: convenient and practical synthesis of <i>ortho</i> -phosphinyl phenols. Green Chemistry, 2018, 20, 5111-5116.	9.0	24
74	Stereospecific Aerobic Oxidative Dehydrocoupling of P(O)–H Bonds with Amines Catalyzed by Copper. Bulletin of the Chemical Society of Japan, 2014, 87, 400-402.	3.2	23
75	A salt-free synthesis of 1,2-bisphosphorylethanes via an efficient PMe3-catalyzed addition of >P(O)H to vinylphosphoryl compounds. Tetrahedron Letters, 2015, 56, 5303-5305.	1.4	21
76	Copperâ€Catalyzed Allenylationâ€Isomerization Sequence of Pentaâ€1,4â€diynâ€3â€yl Acetates with P(O)H Compounds: Facile Synthesis of 1â€Phosphonyl 2,4â€Diynes. Advanced Synthesis and Catalysis, 2016, 358, 3897-3906.	4.3	21
77	Nickelâ€Catalyzed αâ€Benzylation of Arylacetonitriles <i>via</i> CO Activation. Advanced Synthesis and Catalysis, 2016, 358, 816-819.	4.3	20
78	Phosphonium Phenolate Zwitterion <i>vs</i> Phosphonium Ylide: Synthesis, Characterization and Reactivity Study of a Trimethylphosphonium Phenolate Zwitterion. Advanced Synthesis and Catalysis, 2019, 361, 5715-5720.	4.3	20
79	Ready access to organoiodides: Practical hydroiodination and double-iodination of carbon-carbon unsaturated bonds with I2. Tetrahedron, 2019, 75, 3510-3515.	1.9	20
80	Selective Addition of P(O)–H Bonds to Alkynes Catalyzed by Transition Metals Immobilized on Polystyrene-bound Triphenylphosphine. Chemistry Letters, 2013, 42, 1065-1067.	1.3	19
81	Silverâ€Catalyzed Atomâ€Economic Hydrophosphorylation of Propargyl Epoxides: An Access to 4â€Phosphoryl 2,3â€Allenols and Stereodefined 1â€Phosphoryl 1,3â€Dienes. Advanced Synthesis and Catalysis, 2017, 359, 3626-3637.	4.3	19
82	Catalytic sp ³ C–CN Bond Cleavage: Ni-Mediated Phosphorylation of Alkylnitriles. Organic Letters, 2018, 20, 6746-6749.	4.6	19
83	Copper-mediated selective aerobic oxidative C3-cyanation of indoles with DMF. Tetrahedron Letters, 2015, 56, 5937-5940.	1.4	18
84	Cadmium(II) Chloride atalyzed Dehydrative Câ^'P Coupling of Propargyl Alcohols with Diarylphosphine Oxides to Afford Allenylphosphine Oxides. Advanced Synthesis and Catalysis, 2017, 359, 4417-4426.	4.3	18
85	Water determines the products: an unexpected BrÃุnsted acid-catalyzed PO–R cleavage of P(<scp>iii</scp>) esters selectively producing P(O)–H and P(O)–R compounds. Green Chemistry, 2019, 21, 2916-2922.	9.0	18
86	Conversion of Aryl Aldehydes to Benzyl Iodides and Diarylmethanes by H ₃ PO ₃ /l ₂ . Journal of Organic Chemistry, 2021, 86, 3081-3088.	3.2	18
87	Catalyst-Free and Selective C–N Bond Functionalization: Stereospecific Three-Component Coupling of Amines, Dichloromethane, and >P(O)H Species Affording α-Aminophosphorus Compounds. Journal of Organic Chemistry, 2015, 80, 62-69.	3.2	17
88	t-BuOK-mediated reductive addition of P(O)–H compounds to terminal alkynes forming β-arylphosphine oxides. Organic and Biomolecular Chemistry, 2017, 15, 5462-5467.	2.8	17
89	Reinvestigation of the Substitutions Reaction of Stereogenic Phosphoryl Compounds: Stereochemistry, Mechanism, and Applications. Journal of Organic Chemistry, 2017, 82, 11990-12002.	3.2	17
90	Oxidative Dephosphorylation of Benzylic Phosphonates with Dioxygen Generating Symmetrical <i>trans</i> -Stilbenes. Journal of Organic Chemistry, 2018, 83, 2959-2965.	3.2	17

#	Article	IF	CITATIONS
91	Zinc-catalyzed regioselective C–P coupling of <i>p</i> -quinol ethers with secondary phosphine oxides to afford 2-phosphinylphenols. Organic and Biomolecular Chemistry, 2019, 17, 2972-2984.	2.8	17
92	Nickel-catalyzed synthesis of (E)-olefins from benzylic alcohol derivatives and arylacetonitriles via C–O activation. Chemical Communications, 2016, 52, 2157-2160.	4.1	15
93	The PMe3-catalyzed addition of enantiomerically pure (â``)-MenthylO(Ph)P(O)H to electron-deficient alkenes: an efficient way for the preparation of P-stereogenic compounds. Tetrahedron: Asymmetry, 2017, 28, 84-89.	1.8	15
94	Epoxidation of phosphinoyl alkenes with hydrogen peroxide. Tetrahedron Letters, 2006, 47, 421-424.	1.4	14
95	Umpolung catalyzed by organophosphines: efficient β,β-dimerization of vinylphosphonates affording linear dimers. RSC Advances, 2012, 2, 5935.	3.6	14
96	Three-Component Reactions of α-Amino Acids, p-Quinone Monoacetals, and Diarylphosphine Oxides to Selectively Afford 3-(Diarylphosphinyl)anilides and N-Aryl-2-diarylphosphinylpyrrolidines. Journal of Organic Chemistry, 2020, 85, 14753-14762.	3.2	14
97	Me 3 P-catalyzed addition of hydrogen phosphoryl compounds P(O)H to electron-deficient alkenes: 1 to 1 vs 1 to 2 adducts. Tetrahedron, 2017, 73, 7085-7093.	1.9	13
98	Wet and Dry Processes for the Selective Transformation of Phosphonates to Phosphonic Acids Catalyzed by BrÃ,nsted Acids. Journal of Organic Chemistry, 2020, 85, 14411-14419.	3.2	13
99	Regio- and stereoselective synthesis of poly(arylenevinylene phosphine oxide)s by the metal-catalyzed addition polymerization of bisphosphoroyl compounds with diynes. Journal of Polymer Science Part A, 2005, 43, 5328-5336.	2.3	12
100	Direct C–OH/P(O)–H dehydration coupling forming phosphine oxides. Organic and Biomolecular Chemistry, 2018, 16, 5090-5093.	2.8	12
101	Three omponent Reaction of p â€Quinone Monoacetals, Amines and Diarylphosphine Oxides to Afford m― (Phosphinyl)anilides. Advanced Synthesis and Catalysis, 2020, 362, 942-948.	4.3	12
102	Chlorosilane-Catalyzed Coupling of Hydrogen Phosphine Oxides with Acyl Chlorides Generating Acylphosphine Oxides. Organic Letters, 2020, 22, 4633-4637.	4.6	12
103	Phosphonic acid mediated practical dehalogenation and benzylation with benzyl halides. RSC Advances, 2019, 9, 22343-22347.	3.6	11
104	Phosphorylation of Carboxylic Acids and Their Derivatives with P(O)–H Compounds Forming P(O)–C Bonds. Synthesis, 2021, 53, 95-106.	2.3	11
105	Rhodium―and Iridiumâ€Catalyzed Asymmetric Addition of Optically Pure <i>P</i> â€Chiral <i>H</i> â€Phosphinates to Aldehydes Leading to Optically Active αâ€Hydroxyphosphinates. Chemistry - A European Journal, 2016, 22, 6213-6217.	3.3	9
106	Selective C–P(O) Bond Cleavage of Organophosphine Oxides by Sodium. Journal of Organic Chemistry, 2020, 85, 14166-14173.	3.2	9
107	Nickel-catalyzed α-benzylation of sulfones with esters via C–O activation. RSC Advances, 2016, 6, 42656-42659.	3.6	8
108	Preparation of enantiomerically pure α-hydroxyl phosphinates via hydrophosphorylation of aldehydes with H-phosphinate. Tetrahedron: Asymmetry, 2014, 25, 1520-1526.	1.8	6

#	Article	IF	CITATIONS
109	Synthesis and molecular structure of tetranuclear Cu4P4 complexes with R2P–O–PR2 ligands. Inorganica Chimica Acta, 2014, 422, 36-39.	2.4	6
110	Facile Base-Mediated Redox Transformation: An Efficient Strategy for the Synthesis of α-Acyloxyphosphoryl Compounds. Organic Letters, 2014, 16, 6152-6155.	4.6	4
111	Palladium-Catalyzed Solvent-Free Preparation of Arylphosphonates ArP(O)(OAr) ₂ from (ArO) ₃ P via the Michaelis–Arbuzov Rearrangement. Organometallics, 2020, 39, 3613-3617.	2.3	4
112	Selective P-C bond cleavage of tertiary phosphine boranes by sodium. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 961-964.	1.6	4
113	Facial conversion of secondary phosphine oxides R1R2P(O)H to chlorophosphines R1R2PCl by acetyl chloride. Tetrahedron Letters, 2020, 61, 151556.	1.4	3
114	Reductive conversion of phosphoryl P(O) compounds to trivalent organophosphines R3P. Tetrahedron Letters, 2021, 67, 152870.	1.4	3
115	过渡金属å,¬åŒ–é«~选櫩性膦氢化å应. Scientia Sinica Chimica, 2010, 40, 802-826.	0.4	3
116	Conversion of αâ€hydroxy(2,4,6â€ŧrimethylbenzyl)diphenylphosphine oxide to TPO: oxidation vs decomposition. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 207-210.	1.6	2
117	Ready approach to poly(vinyldiphenylphosphine): A novel soluble polymer for conveniently conducting Wittig reactions. Tetrahedron Letters, 2021, 65, 152796.	1.4	2
118	A Convenient Stereoselective Reduction of Gem-Dibromides with a Combination of Dimethyl Phosphite and Potassium Carbonate. Phosphorus, Sulfur and Silicon and the Related Elements, 2015, 190, 1820-1827.	1.6	1
119	Oxidative addition of (RO)2P(O)H to Pt(0) complexes generating Pt-H complexes: P(O)-H bond cleavage vs P(O-H) bond cleavage. Heteroatom Chemistry, 2018, 29, e21460.	0.7	1
120	Solvent-free Zn(OTf)2-catalyzed dehydrative cross coupling of propargyl alcohols with diarylphosphine oxides to afford allenylphosphine oxides. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 691-696.	1.6	1
121	Love in the Time of COVID. Journal of Organic Chemistry, 2020, 85, 14273-14275.	3.2	1
122	One-pot synthesis of binaphthyl-based phosphines via direct modification of BINAP. Tetrahedron Letters, 2021, 86, 153489.	1.4	1
123	Direct phosphorylation of benzylic C–H bonds under transition metal-free conditions forming sp ³ C–P bonds. RSC Advances, 2022, 12, 18441-18444.	3.6	1
124	Efficient and Selective Nickel-Catalyzed Addition of H—P(O) and H—S Bonds to Alkynes ChemInform, 2004, 35, no.	0.0	0
125	Nickel-Catalyzed Addition of P(O)—H Bonds to Propargyl Alcohols: One-Pot Generation of Phosphinoyl 1,3-Butadienes ChemInform, 2005, 36, no.	0.0	0