
## Konstantinos Malliaras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2710286/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, The, 2012, 379, 895-904.                                                                              | 13.7 | 1,294     |
| 2  | Intracoronary Cardiosphere-Derived Cells After Myocardial Infarction. Journal of the American<br>College of Cardiology, 2014, 63, 110-122.                                                                                                                     | 2.8  | 468       |
| 3  | Direct Comparison of Different Stem Cell Types and Subpopulations Reveals Superior Paracrine<br>Potency and Myocardial Repair Efficacy With Cardiosphere-Derived Cells. Journal of the American<br>College of Cardiology, 2012, 59, 942-953.                   | 2.8  | 427       |
| 4  | Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Molecular Medicine, 2013, 5, 191-209.                                                                 | 6.9  | 268       |
| 5  | Safety and Efficacy of Allogeneic Cell Therapy in Infarcted Rats Transplanted With Mismatched Cardiosphere-Derived Cells. Circulation, 2012, 125, 100-112.                                                                                                     | 1.6  | 262       |
| 6  | Validation of the Cardiosphere Method to Culture Cardiac Progenitor Cells from Myocardial Tissue.<br>PLoS ONE, 2009, 4, e7195.                                                                                                                                 | 2.5  | 252       |
| 7  | Magnetic Targeting Enhances Engraftment and Functional Benefit of Iron-Labeled<br>Cardiosphere-Derived Cells in Myocardial Infarction. Circulation Research, 2010, 106, 1570-1581.                                                                             | 4.5  | 226       |
| 8  | Validation of Contrast-Enhanced Magnetic Resonance Imaging to Monitor Regenerative Efficacy After<br>Cell Therapy in a Porcine Model of Convalescent Myocardial Infarction. Circulation, 2013, 128,<br>2764-2775.                                              | 1.6  | 100       |
| 9  | Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit after Intracoronary<br>Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplantation,<br>2012, 21, 1121-1135.                                | 2.5  | 86        |
| 10 | Stimulation of endogenous cardioblasts by exogenous cell therapy after myocardial infarction. EMBO<br>Molecular Medicine, 2014, 6, 760-777.                                                                                                                    | 6.9  | 82        |
| 11 | Cellular Postconditioning. Circulation: Heart Failure, 2015, 8, 322-332.                                                                                                                                                                                       | 3.9  | 79        |
| 12 | Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. European Heart Journal, 2015, 36, 751-762.                                                                                             | 2.2  | 79        |
| 13 | Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a<br>randomized, placebo-controlled, double-blinded trial. European Heart Journal, 2020, 41, 3451-3458.                                                                | 2.2  | 78        |
| 14 | Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology, 2019, 92, e866-e878.                                                                                                                                                     | 1.1  | 64        |
| 15 | Durable Benefits of Cellular Postconditioning: Longâ€Term Effects of Allogeneic Cardiosphereâ€Derived<br>Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. Journal of the American<br>Heart Association, 2016, 5, .                    | 3.7  | 32        |
| 16 | Allogeneic cardiosphere-derived cells for the treatment of heart failure with reduced ejection<br>fraction: the Dilated cardiomYopathy iNtervention with Allogeneic MyocardIally-regenerative Cells<br>(DYNAMIC) trial. EuroIntervention, 2020, 16, e293-e300. | 3.2  | 32        |
| 17 | Cardiosphere-Derived Cells Attenuate Inflammation, Preserve Systolic Function, and Prevent Adverse<br>Remodeling in Rat Hearts With Experimental Autoimmune Myocarditis. Journal of Cardiovascular<br>Pharmacology and Therapeutics, 2019, 24, 70-77.          | 2.0  | 19        |
| 18 | Effect of Elevated Reperfusion Pressure on "No Reflow―Area and Infarct Size in a Porcine Model of<br>Ischemia–Reperfusion. Journal of Cardiovascular Pharmacology and Therapeutics, 2016, 21, 405-411.                                                         | 2.0  | 15        |

| #  | Article                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cardiomyocyte proliferation vs progenitor cells in myocardial regeneration: The debate continues.<br>Global Cardiology Science & Practice, 2013, 2013, 37.                                                                                                                                      | 0.4 | 14        |
| 20 | Effects of Intra-aortic Balloon Pump Counterpulsation on Left Ventricular Mechanoenergetics in a<br>Porcine Model of Acute Ischemic Heart Failure. Journal of Cardiovascular Translational Research,<br>2014, 7, 810-820.                                                                       | 2.4 | 13        |
| 21 | Cardioprotective effects of intracoronary administration of 4-chlorodiazepam in small and large animal models of ischemia-reperfusion. International Journal of Cardiology, 2016, 224, 90-95.                                                                                                   | 1.7 | 10        |
| 22 | Pharmacologic inhibition of the mitochondrial Na+/Ca2+ exchanger protects against ventricular<br>arrhythmias in a porcine model of ischemia-reperfusion. Hellenic Journal of Cardiology, 2018, 59,<br>217-222.                                                                                  | 1.0 | 10        |
| 23 | Innate heart regeneration: endogenous cellular sources and exogenous therapeutic amplification.<br>Expert Opinion on Biological Therapy, 2016, 16, 1341-1352.                                                                                                                                   | 3.1 | 8         |
| 24 | A combined cellular and surgical ventricular reconstruction therapeutic approach produces attenuation of remodeling in infarcted rats. Hellenic Journal of Cardiology, 2017, 58, 135-142.                                                                                                       | 1.0 | 6         |
| 25 | Continuous internal counterpulsation as a bridge to recovery in acute and chronic heart failure.<br>World Journal of Transplantation, 2016, 6, 115.                                                                                                                                             | 1.6 | 4         |
| 26 | Intracoronary Administration of Allogeneic Cardiosphere-Derived Cells Immediately Prior to<br>Reperfusion in Pigs With Acute Myocardial Infarction Reduces Infarct Size and Attenuates Adverse<br>Cardiac Remodeling. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 88-99. | 2.0 | 3         |
| 27 | Salutary Effects of the PULVAD, a Novel Implantable Counterpulsation Assist Device, on Cardiac Mechanoenergetics. ASAIO Journal, 2019, 65, 473-480.                                                                                                                                             | 1.6 | 3         |
| 28 | Endogenous Regeneration of the Mammalian Heart. , 2019, , 339-354.                                                                                                                                                                                                                              |     | 2         |
| 29 | Lack of macroscopically evident cardiac regeneration or spontaneous functional recovery in infarcted neonatal pigs. Hellenic Journal of Cardiology, 2020, 61, 219-221.                                                                                                                          | 1.0 | 1         |
|    |                                                                                                                                                                                                                                                                                                 |     |           |

Cell Therapy for Heart Disease: Ready for Prime Time or Lost in Translation?., 2019, , 355-376.

0