
Jose-Luis Santiago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2709133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chemistry, 2012, 130, 9-19.	8.2	98
2	Deforestation of water-repellent soils in Galicia (NW Spain): effects on surface runoff and erosion under simulated rainfall. Earth Surface Processes and Landforms, 2003, 28, 145-155.	2.5	72
3	Aroma potential of Brancellao grapes from different cluster positions. Food Chemistry, 2012, 132, 112-124.	8.2	60
4	Determination of relationships among autochthonous grapevine varieties (Vitis vinifera L.) in the Northwest of the Iberian Peninsula by using microsatellite markers. Genetic Resources and Crop Evolution, 2006, 53, 1255-1261.	1.6	41
5	Susceptibility to downy mildew (Plasmopara viticola) of different Vitis varieties. Crop Protection, 2014, 63, 26-35.	2.1	36
6	Floral, spicy and herbaceous active odorants in Gran Negro grapes from shoulders and tips into the cluster, and comparison with Brancellao and Mouratón varieties. Food Chemistry, 2012, 135, 2771-2782.	8.2	33
7	A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica, 2006, 149, 133-144.	1.2	30
8	Susceptibility of 44 grapevine (Vitis vinifera L.) varieties to downy mildew in the field. Australian Journal of Grape and Wine Research, 2011, 17, 394-400.	2.1	30
9	Molecular and ampelographic characterisation of Vitis vinifera L. "Albariño", "Savagnin Blanc" and "CaÃño Blanco" shows that they are different cultivars. Spanish Journal of Agricultural Research, 2007, 5, 333.	0.6	29
10	Resistance of Eight Different Clones of the Grape Cultivar Albariño to Plasmopara viticola. Plant Disease, 2004, 88, 741-744.	1.4	26
11	Evolution of flavonoids in Mouratón berries taken from both bunch halves. Food Chemistry, 2013, 138, 1868-1877.	8.2	26
12	Classification and Characterization of Different White Grape Juices by Using a Hybrid Electronic Tongue. Journal of Agricultural and Food Chemistry, 2013, 61, 9325-9332.	5.2	25
13	Identification of and relationships among a number of <i>teinturier</i> grapevines that expanded across Europe in the early 20th century. Australian Journal of Grape and Wine Research, 2008, 14, 223.	2.1	24
14	Active odorants in MouratÃ ³ n grapes from shoulders and tips into the bunch. Food Chemistry, 2012, 133, 1362-1372.	8.2	22
15	Aromatic Compounds in Wines Produced During Fermentation: Effect of Three Red Cultivars. International Journal of Food Properties, 2007, 10, 867-875.	3.0	21
16	Anthocyanins and flavonols berries from Vitis vinifera L. cv. Brancellao separately collected from two different positions within the cluster. Food Chemistry, 2012, 135, 47-56.	8.2	21
17	Variability at the electron microscopic level in leaves of members of the genus Vitis. Scientia Horticulturae, 2011, 128, 228-238.	3.6	19

A contribution to the maintenance of grapevine diversity: The rescue of Tinta Casta \tilde{A} ±al (Vitis vinifera) Tj ETQq0 0 0 grgBT /Overlock 10 T

JOSE-LUIS SANTIAGO

#	Article	IF	CITATIONS
19	Grapevine (Vitis vinifera L.): Old Varieties are Reflected in Works of Art. Economic Botany, 2009, 63, 67-77.	1.7	16
20	Relationship Between Susceptibility to Botrytis Bunch Rot and Grape Cluster Morphology in the <i>Vitis vinifera</i> L. Cultivar Albariño. International Journal of Fruit Science, 2008, 8, 251-265.	2.4	14
21	Flavonoids in Gran Negro berries collected from shoulders and tips within the cluster, and comparison with Brancellao and MouratÃ ³ n varieties. Food Chemistry, 2012, 133, 806-815.	8.2	13
22	A method to evaluate downy mildew resistance in grapevine. Agronomy for Sustainable Development, 2005, 25, 163-165.	0.8	13
23	New monovarietal grape seed oils derived from white grape bagasse generated on an industrial scale at a winemaking plant. LWT - Food Science and Technology, 2018, 92, 388-394.	5.2	12
24	Factors Affecting the Vineyard Populational Diversity of Plasmopara viticola. Plant Pathology Journal, 2019, 35, 125-136.	1.7	11
25	Contribution of some grape-derived aromatic compounds to the primary aroma in red wines from cv. Caiño Tinto, cv. Caiño Bravo and cv. Caiño Longo grapes. Journal of Agricultural Science, 2008, 146, 325-332.	1.3	10
26	Comparative ampelographic and genetic analysis of grapevine cultivars from Algeria and Morocco. Australian Journal of Grape and Wine Research, 2014, 20, 324-333.	2.1	9
27	Value of two Spanish live grapevine collections in the resolution of synonyms, homonyms and naming errors. Australian Journal of Grape and Wine Research, 2018, 24, 430-438.	2.1	8
28	Narcea—an unknown, ancient cultivated rose variety from northern Spain. Horticulture Research, 2020, 7, 44.	6.3	8
29	The forgotten, ancient olive trees of the Spanish northwest: A first molecular and botanical analysis. Spanish Journal of Agricultural Research, 2019, 17, e0702.	0.6	8
30	Morphometric comparison of current, Romanâ€era and medieval <i>Vitis</i> seeds from the northâ€west of Spain. Australian Journal of Grape and Wine Research, 2020, 26, 300-309.	2.1	7
31	Evaluation and Pre-selection of New Grapevine Genotypes Resistant to Downy and Powdery Mildew, Obtained by Cross-Breeding Programs in Spain. Frontiers in Plant Science, 2021, 12, 674510.	3.6	7
32	Works of Art and Crop History: Grapevine Varieties and the Baroque Altarpieces. Economic Botany, 2014, 68, 153-168.	1.7	6
33	Co-Adjuvant Therapy Efficacy of Catechin and Procyanidin B2 with Docetaxel on Hormone-Related Cancers In Vitro. International Journal of Molecular Sciences, 2021, 22, 7178.	4.1	6
34	Characterization of Grapevine Genetic Resources in the Comunitat Valenciana (Spain). International Journal of Fruit Science, 2022, 22, 287-302.	2.4	5
35	Polyphenols in the Waste Water Produced during the Hydrodistillation of â€~Narcea Roses' Cultivated in the Cibea River Valley (Northern Spain). Horticulturae, 2022, 8, 376.	2.8	5
36	The influence of 110-Ritcher and SO4 rootstocks on the performance of scions of Vitis vinifera L. cv. Albariño clones. Spanish Journal of Agricultural Research, 2008, 6, 96.	0.6	4

0

#	Article	IF	CITATIONS
37	Identity of three grapevine varieties from a rediscovered viticulture region in northwest Spain. Oeno One, 2016, 45, 245.	1.4	3
38	Synonymy of Two Ancient Grapevine Cultivars (<i>Vitis vinifera</i> L.)—Cascón and Corbillón—From the D.O. RÃas Baixas Ribeira do Ulla Subzone (Galicia, Spain). International Journal of Fruit Science, 2009, 9, 157-165.	2.4	2
39	Variation in Sensitivity of Different Grapevine Genotypes to Erysiphe necator Growing under Unfavourable Climatic Conditions. South African Journal of Enology and Viticulture, 2018, 39, .	0.4	2
40	Concentration of Flavanols in Red and White Winemaking Wastes (Grape Skins, Seeds and Bunch) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 50
41	VARIABILITY WITHIN THE CULTIVAR 'GRUENER VELTLINER'. Acta Horticulturae, 2009, , 245-252.	0.2	2
42	Influence of Rootstock Type on the Agronomic Characteristics of Two Grape (>Vitis vinifera L.) Cultivars Grown in the Northwestern Iberian Peninsula. Plant Production Science, 2007, 10, 473-477.	2.0	1
43	Preliminary Study of Ancient DNA from a 215-year-old Grapevine Herbarium. American Journal of Enology and Viticulture, 2019, 70, 420-426.	1.7	1
44	Polyphenol content of the petals of the â€~Rosa Narcea' cultivated in the mountains of Asturias (northern Spain). Acta Horticulturae, 2021, , 233-238.	0.2	1
45	Ampelographic and Agronomic Variability of Two Iberian Grapevine Cultivars Grafted onto 110R and SO4 Rootstocks. International Journal of Fruit Science, 2010, 10, 195-214.	2.4	0
46	Somatic mutations in Vitis vinifera L. cultivars growing in northwestern Spain. Acta Horticulturae, 2017, , 337-342.	0.2	0
47	Isolation and amplification of ancient DNA from herborized grapevine leaves collected by Spanish botanist SimÃ ³ n de Rojas Clemente y Rubio in 1803-1804. Acta Horticulturae, 2019, , 35-42.	0.2	0
48	El herbario de variedades de vid de Simón de Rojas Clemente y otras aportaciones. Valor cientÃfico y utilidad sociocultural de su legado. Arbor, 2019, 195, 494.	0.3	0
49	About the epidermic cells in â€~Rosa Narcea'. Acta Horticulturae, 2021, , 73-80.	0.2	0

Aromatic composition of the petals of the †Rosa Narcea' cultivated in the mountains of Asturias (northern Spain). Acta Horticulturae, 2021, , 223-232. 0.2