Martin Dichgans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2708087/publications.pdf Version: 2024-02-01

	4146	2571
45,407	87	195
citations	h-index	g-index
315	315	40518
docs citations	times ranked	citing authors
	citations 315	45,407 87 citations h-index 315 315

#	Article	IF	CITATIONS
1	Circadian rhythm of ischaemic core progression in human stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2023, 94, 70-73.	1.9	26
2	International stroke genetics consortium recommendations for studies of genetics of stroke outcome and recovery. International Journal of Stroke, 2022, 17, 260-268.	5.9	13
3	The <i>BIN1</i> rs744373 Alzheimer's disease risk SNP is associated with faster Aβâ€associated tau accumulation and cognitive decline. Alzheimer's and Dementia, 2022, 18, 103-115.	0.8	24
4	Prediction of dementia using diffusion tensor MRI measures: the OPTIMAL collaboration. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 14-23.	1.9	15
5	Additive Effects of Genetic Interleukinâ€6 Signaling Downregulation and Lowâ€Density Lipoprotein Cholesterol Lowering on Cardiovascular Disease: A 2×2 Factorial Mendelian Randomization Analysis. Journal of the American Heart Association, 2022, 11, e023277.	3.7	19
6	Soluble TAM receptors sAXL and sTyro3 predict structural and functional protection in Alzheimer's disease. Neuron, 2022, 110, 1009-1022.e4.	8.1	27
7	Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nature Genetics, 2022, 54, 152-160.	21.4	135
8	Elucidating the relationship between migraine risk and brain structure using genetic data. Brain, 2022, 145, 3214-3224.	7.6	7
9	Targeting the CCL2–CCR2 axis for atheroprotection. European Heart Journal, 2022, 43, 1799-1808.	2.2	60
10	Genetic Architecture of Stroke of Undetermined Source: Overlap with Known Stroke Etiologies and Associations with Modifiable Risk Factors. Annals of Neurology, 2022, 91, 640-651.	5.3	7
11	Cardiac Risk Factors for Stroke: A Comprehensive Mendelian Randomization Study. Stroke, 2022, 53, STROKEAHA121036306.	2.0	8
12	Pharmacological Targeting of the CCL2/CCR2 Axis for Atheroprotection: A Meta-Analysis of Preclinical Studies. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 101161ATVBAHA122317492.	2.4	8
13	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
14	Circulating Interleukin-6 Levels and Incident Ischemic Stroke. Neurology, 2022, 98, .	1.1	29
15	Shared genetic background between SARS-CoV-2 infection and large artery stroke. International Journal of Stroke, 2022, , 174749302210956.	5.9	3
16	Post-Stroke Cognitive Impairment and Dementia. Circulation Research, 2022, 130, 1252-1271.	4.5	188
17	Neuroimmune cardiovascular interfaces control atherosclerosis. Nature, 2022, 605, 152-159.	27.8	86
18	Complicated Carotid Artery Plaques and Risk of Recurrent Ischemic Stroke or TIA. Journal of the American College of Cardiology, 2022, 79, 2189-2199.	2.8	20

#	Article	IF	CITATIONS
19	Association of Rare <i>APOE</i> Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurology, 2022, 79, 652.	9.0	31
20	Prevalence and Significance of the Vessel-Cluster Sign on Susceptibility-Weighted Imaging in Patients With Severe Small Vessel Disease. Neurology, 2022, 99, .	1.1	11
21	Genetically predicted on-statin LDL response is associated with higher intracerebral haemorrhage risk. Brain, 2022, 145, 2677-2686.	7.6	15
22	Response to letter by Prof Christian Nolte and colleagues. European Stroke Journal, 2022, 7, 341-342.	5.5	1
23	The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI–neuropathology diagnostic accuracy study. Lancet Neurology, The, 2022, 21, 714-725.	10.2	168
24	The BDNFVal66Met SNP modulates the association between beta-amyloid and hippocampal disconnection in Alzheimer's disease. Molecular Psychiatry, 2021, 26, 614-628.	7.9	61
25	Association of Circulating Monocyte Chemoattractant Protein–1 Levels With Cardiovascular Mortality. JAMA Cardiology, 2021, 6, 587.	6.1	35
26	Whole-exome sequencing reveals a role of HTRA1 and EGFL8 in brain white matter hyperintensities. Brain, 2021, 144, 2670-2682.	7.6	21
27	Diabetes Mellitus, Glycemic Traits, and Cerebrovascular Disease. Neurology, 2021, 96, e1732-e1742.	1.1	59
28	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	1.8	90
29	Prediction of Long-term Cognitive Function After Minor Stroke Using Functional Connectivity. Neurology, 2021, 96, .	1.1	19
30	Dose–response relationship between genetically proxied average blood glucose levels and incident coronary heart disease in individuals without diabetes mellitus. Diabetologia, 2021, 64, 845-849.	6.3	14
31	Population impact of different hypertension management guidelines based on the prospective population-based Heinz Nixdorf Recall study. BMJ Open, 2021, 11, e039597.	1.9	3
32	Simple and reliable detection of CRISPR-induced on-target effects by qgPCR and SNP genotyping. Nature Protocols, 2021, 16, 1714-1739.	12.0	22
33	Mendelian randomization for studying the effects of perturbing drug targets. Wellcome Open Research, 2021, 6, 16.	1.8	48
34	Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease. Brain, 2021, 144, 2176-2185.	7.6	66
35	Modifiable Lifestyle Factors and Risk of Stroke. Stroke, 2021, 52, 931-936.	2.0	27
36	Midlife vascular risk factors and risk of incident dementia: Longitudinal cohort and Mendelian randomization analyses in the UK Biobank. Alzheimer's and Dementia, 2021, 17, 1422-1431.	0.8	80

#	Article	IF	CITATIONS
37	Genetically Downregulated Interleukin-6 Signaling Is Associated With a Favorable Cardiometabolic Profile. Circulation, 2021, 143, 1177-1180.	1.6	27
38	Microbiota-derived short chain fatty acids modulate microglia and promote AÎ ² plaque deposition. ELife, 2021, 10, .	6.0	148
39	Post-injury immunosuppression and secondary infections are caused by an AIM2 inflammasome-driven signaling cascade. Immunity, 2021, 54, 648-659.e8.	14.3	57
40	A proteomic atlas of the neointima identifies novel druggable targets for preventive therapy. European Heart Journal, 2021, 42, 1773-1785.	2.2	11
41	Genetically Proxied Inhibition of Coagulation Factors and Risk of Cardiovascular Disease: A Mendelian Randomization Study. Journal of the American Heart Association, 2021, 10, e019644.	3.7	12
42	Serum Monocyte-Chemoattractant Protein–1 Could Be an Indicator of Coronary Artery Calcium Score—Reply. JAMA Cardiology, 2021, 6, 605.	6.1	0
43	Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology, The, 2021, 20, 351-361.	10.2	95
44	Circulating biomarkers of immunity and inflammation, risk of Alzheimer's disease, and hippocampal volume: a Mendelian randomization study. Translational Psychiatry, 2021, 11, 291.	4.8	21
45	Monocyte-Chemoattractant Protein-1 Levels in Human Atherosclerotic Lesions Associate With Plaque Vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2038-2048.	2.4	48
46	Common variants in Alzheimer's disease and risk stratification by polygenic risk scores. Nature Communications, 2021, 12, 3417.	12.8	140
47	Relationship Between Blood Pressure and Incident Cardiovascular Disease: Linear and Nonlinear Mendelian Randomization Analyses. Hypertension, 2021, 77, 2004-2013.	2.7	55
48	KL-VS heterozygosity is associated with lower amyloid-dependent tau accumulation and memory impairment in Alzheimer's disease. Nature Communications, 2021, 12, 3825.	12.8	29
49	Circadian Biology and Stroke. Stroke, 2021, 52, 2180-2190.	2.0	38
50	Prioritizing the Role of Major Lipoproteins and Subfractions as Risk Factors for Peripheral Artery Disease. Circulation, 2021, 144, 353-364.	1.6	47
51	Tau-PET and in vivo Braak-staging as prognostic markers of future cognitive decline in cognitively normal to demented individuals. Alzheimer's Research and Therapy, 2021, 13, 137.	6.2	59
52	Organizational Update From the European Stroke Organisation. Stroke, 2021, 52, e517-e519.	2.0	0
53	Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. Journal of Clinical Investigation, 2021, 131, .	8.2	30
54	Stroke Genetics: Turning Discoveries into Clinical Applications. Stroke, 2021, 52, 2974-2982.	2.0	9

#	Article	IF	CITATIONS
55	Genetics, Genomics, and Precision Medicine. Stroke, 2021, 52, 3385-3387.	2.0	1
56	Global, regional, and national burden of stroke and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurology, The, 2021, 20, 795-820.	10.2	2,308
57	OUP accepted manuscript. Brain, 2021, , .	7.6	1
58	Physician-Confirmed and Administrative Definitions of Stroke in UK Biobank Reflect the Same Underlying Genetic Trait. Frontiers in Neurology, 2021, 12, 787107.	2.4	4
59	The <i>BIN1</i> rs744373 Alzheimer's disease risk SNP is associated with faster Al̂²â€associated tau accumulation and cognitive decline. Alzheimer's and Dementia, 2021, 17, .	0.8	3
60	In vivo Braakâ€staging using ¹⁸ Fâ€Flortaucipirâ€ŧauâ€PET as a predictive marker for future cognitive decline in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0
61	Klothoâ€VS heterozygosity modifies amyloidâ€dependent tau accumulation and memory impairment in Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, e051343.	0.8	Ο
62	Tau spreads across connected brain regions in progressive supranuclear palsy and corticobasal syndrome. Alzheimer's and Dementia, 2021, 17, .	0.8	1
63	Within-lesion heterogeneity of subcortical DWI lesion evolution, and stroke outcome: A voxel-based analysis. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1482-1491.	4.3	19
64	Short-Chain Fatty Acids Improve Poststroke Recovery via Immunological Mechanisms. Journal of Neuroscience, 2020, 40, 1162-1173.	3.6	199
65	The global burden of neurological disorders: translating evidence into policy. Lancet Neurology, The, 2020, 19, 255-265.	10.2	377
66	Influence of Genetic Variation in <i>PDE3A</i> on Endothelial Function and Stroke. Hypertension, 2020, 75, 365-371.	2.7	4
67	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration. Molecular Neurodegeneration, 2020, 15, 57.	10.8	33
68	Genome-wide association study of intracranial aneurysms identifies 17 risk loci and genetic overlap with clinical risk factors. Nature Genetics, 2020, 52, 1303-1313.	21.4	163
69	Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nature Communications, 2020, 11, 5981.	12.8	29
70	Patient-centered connectivity-based prediction of tau pathology spread in Alzheimer's disease. Science Advances, 2020, 6, .	10.3	86
71	Genome-Wide Association Study Meta-Analysis of Stroke in 22 000 Individuals of African Descent Identifies Novel Associations With Stroke. Stroke, 2020, 51, 2454-2463.	2.0	26
72	A Mendelian randomization of γ′ and total fibrinogen levels in relation to venous thromboembolism and ischemic stroke. Blood, 2020, 136, 3062-3069.	1.4	25

#	Article	IF	CITATIONS
73	Broad phenotype of cysteine-altering <i>NOTCH3</i> variants in UK Biobank. Neurology, 2020, 95, e1835-e1843.	1.1	49
74	Circulating Metabolites Differentiate Acute Ischemic Stroke from Stroke Mimics. Annals of Neurology, 2020, 88, 736-746.	5.3	27
75	Tackling challenges in care of Alzheimer's disease and other dementias amid the COVIDâ€19 pandemic, now and in the future. Alzheimer's and Dementia, 2020, 16, 1571-1581.	0.8	122
76	Higher CSF sTREM2 and microglia activation are associated with slower rates of betaâ€amyloid accumulation. EMBO Molecular Medicine, 2020, 12, e12308.	6.9	73
77	Complicated Carotid Artery Plaques as a Cause of Cryptogenic Stroke. Journal of the American College of Cardiology, 2020, 76, 2212-2222.	2.8	64
78	Small vessel disease more than Alzheimer's disease determines diffusion MRI alterations in memory clinic patients. Alzheimer's and Dementia, 2020, 16, 1504-1514.	0.8	35
79	Habitual sleep disturbances and migraine: a Mendelian randomization study. Annals of Clinical and Translational Neurology, 2020, 7, 2370-2380.	3.7	18
80	Interleukin-6 Signaling Effects on Ischemic Stroke and Other Cardiovascular Outcomes. Circulation Genomic and Precision Medicine, 2020, 13, e002872.	3.6	90
81	Detection of Deleterious On-Target Effects after HDR-Mediated CRISPR Editing. Cell Reports, 2020, 31, 107689.	6.4	90
82	Genetic overlap and causal inferences between kidney function and cerebrovascular disease. Neurology, 2020, 94, e2581-e2591.	1.1	31
83	Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability. Circulation Research, 2020, 127, 811-823.	4.5	64
84	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke, 2020, 51, 2111-2121.	2.0	71
85	Ageâ€dependent amyloid deposition is associated with white matter alterations in cognitively normal adults during the adult life span. Alzheimer's and Dementia, 2020, 16, 651-661.	0.8	31
86	Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology, 2020, 95, e353-e361.	1.1	60
87	A genome-wide cross-phenotype meta-analysis of the association of blood pressure with migraine. Nature Communications, 2020, 11, 3368.	12.8	49
88	Genetically Predicted Blood Pressure Across the Lifespan. Hypertension, 2020, 76, 953-961.	2.7	21
89	Genetic determinants of blood lipids and cerebral small vessel disease: role of high-density lipoprotein cholesterol. Brain, 2020, 143, 597-610.	7.6	51
90	Mendelian Randomization Study of Obesity and Cerebrovascular Disease. Annals of Neurology, 2020, 87, 516-524.	5.3	76

#	Article	IF	CITATIONS
91	What Is the Best Mix of Populationâ€Wide and Highâ€Risk Targeted Strategies of Primary Stroke and Cardiovascular Disease Prevention?. Journal of the American Heart Association, 2020, 9, e014494.	3.7	31
92	Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache. International Journal of Epidemiology, 2020, 49, 1022-1031.	1.9	34
93	Author response: WMH and long-term outcomes in ischemic stroke: A systematic review and meta-analysis. Neurology, 2020, 94, 411-411.	1.1	0
94	Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain, 2019, 142, 3176-3189.	7.6	76
95	Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimer's and Dementia, 2019, 15, 961-984.	0.8	200
96	Gene-based analysis in HRC imputed genome wide association data identifies three novel genes for Alzheimer's disease. PLoS ONE, 2019, 14, e0218111.	2.5	23
97	Subtype Specificity of Genetic Loci Associated With Stroke in 16 664 Cases and 32 792 Controls. Circulation Genomic and Precision Medicine, 2019, 12, e002338.	3.6	10
98	The contribution of acute infarcts to cerebral small vessel disease progression. Annals of Neurology, 2019, 86, 582-592.	5.3	27
99	Vascular Cognitive Impairment andÂDementia. Journal of the American College of Cardiology, 2019, 73, 3326-3344.	2.8	384
100	Cardiovascular Risk and Atherosclerosis Progression in Hypertensive Persons Treated to Blood Pressure Targets. Hypertension, 2019, 74, 1436-1447.	2.7	15
101	Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease. Science Translational Medicine, 2019, 11, .	12.4	192
102	Circulating Monocyte Chemoattractant Protein-1 and Risk of Stroke. Circulation Research, 2019, 125, 773-782.	4.5	78
103	The Atherosclerosis Risk Variant rs2107595 Mediates Allele-Specific Transcriptional Regulation of <i>HDAC9</i> via E2F3 and Rb1. Stroke, 2019, 50, 2651-2660.	2.0	38
104	Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. International Journal of Stroke, 2019, , 174749301987191.	5.9	13
105	Prognostic relevance of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology, 2019, 92, e792-e801.	1.1	40
106	Genetic variation in <i>PLEKHG1</i> is associated with white matter hyperintensities (n = 11,226). Neurology, 2019, 92, e749-e757.	1.1	47
107	Use of Genetic Variants Related to Antihypertensive Drugs to Inform on Efficacy and Side Effects. Circulation, 2019, 140, 270-279.	1.6	99
108	In vivo widefield calcium imaging of the mouse cortex for analysis of network connectivity in health and brain disease. Neurolmage, 2019, 199, 570-584.	4.2	50

#	Article	IF	CITATIONS
109	Small vessel disease: mechanisms and clinical implications. Lancet Neurology, The, 2019, 18, 684-696.	10.2	853
110	The Meta VCI Map consortium for metaâ€analyses on strategic lesion locations for vascular cognitive impairment using lesionâ€symptom mapping: Design and multicenter pilot study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 310-326.	2.4	26
111	Quantifying bloodâ€brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimer's and Dementia, 2019, 15, 840-858.	0.8	134
112	Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 191-204.	2.4	65
113	A prospective study of serum metabolites and risk of ischemic stroke. Neurology, 2019, 92, e1890-e1898.	1.1	48
114	Stroke genetics: discovery, biology, and clinical applications. Lancet Neurology, The, 2019, 18, 587-599.	10.2	138
115	WMH and long-term outcomes in ischemic stroke. Neurology, 2019, 92, e1298-e1308.	1.1	163
116	Dementia risk after transient ischaemic attack and stroke. Lancet Neurology, The, 2019, 18, 223-225.	10.2	15
117	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
118	Vascular contributions to cognitive impairment and dementia: Research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2019, 5, 789-796.	3.7	23
119	Genomic risk score offers predictive performance comparable to clinical risk factors for ischaemic stroke. Nature Communications, 2019, 10, 5819.	12.8	124
120	Genetically Determined Levels of Circulating Cytokines and Risk of Stroke. Circulation, 2019, 139, 256-268.	1.6	147
121	Moyamoya Disease Susceptibility Variant <i>RNF213</i> p.R4810K Increases the Risk of Ischemic Stroke Attributable to Large-Artery Atherosclerosis. Circulation, 2019, 139, 295-298.	1.6	64
122	Vascular dysfunction—The disregarded partner of Alzheimer's disease. Alzheimer's and Dementia, 2019, 15, 158-167.	0.8	454
123	Clinical correlates of longitudinal MRI changes in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1299-1305.	4.3	22
124	Left frontal hub connectivity delays cognitive impairment in autosomal-dominant and sporadic Alzheimer's disease. Brain, 2018, 141, 1186-1200.	7.6	83
125	CADASIL brain vessels show a HTRA1 loss-of-function profile. Acta Neuropathologica, 2018, 136, 111-125.	7.7	54
126	Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families. Neuron, 2018, 98, 743-753.e4.	8.1	63

#	Article	IF	CITATIONS
127	Brain-released alarmins and stress response synergize in accelerating atherosclerosis progression after stroke. Science Translational Medicine, 2018, 10, .	12.4	54
128	Challenges and opportunities in stroke genetics. Cardiovascular Research, 2018, 114, 1226-1240.	3.8	26
129	Free water determines diffusion alterations and clinical status in cerebral small vessel disease. Alzheimer's and Dementia, 2018, 14, 764-774.	0.8	108
130	GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nature Communications, 2018, 9, 5141.	12.8	119
131	Genetic Susceptibility Loci for Cardiovascular Disease and Their Impact on Atherosclerotic Plaques. Circulation Genomic and Precision Medicine, 2018, 11, e002115.	3.6	20
132	Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: cohort study of 306 473 UK Biobank participants. BMJ: British Medical Journal, 2018, 363, k4168.	2.3	161
133	Role of Non-Coding RNAs in Stroke. Stroke, 2018, 49, 3098-3106.	2.0	33
134	Genomeâ€wide metaâ€analysis identifies 3 novel loci associated with stroke. Annals of Neurology, 2018, 84, 934-939.	5.3	79
135	Early MoCA predicts long-term cognitive and functional outcome and mortality after stroke. Neurology, 2018, 91, e1838-e1850.	1.1	119
136	Action Plan for Stroke in Europe 2018–2030. European Stroke Journal, 2018, 3, 309-336.	5.5	311
137	Serum neurofilament light. Neurology, 2018, 91, e1338-e1347.	1.1	137
138	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	12.6	1,085
139	Different Types of White Matter Hyperintensities in CADASIL. Frontiers in Neurology, 2018, 9, 526.	2.4	21
140	Genetic Study of White Matter Integrity in UK Biobank (N=8448) and the Overlap With Stroke, Depression, and Dementia. Stroke, 2018, 49, 1340-1347.	2.0	63
141	Multi-ethnic genome-wide association study for atrial fibrillation. Nature Genetics, 2018, 50, 1225-1233.	21.4	552
142	Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nature Genetics, 2018, 50, 524-537.	21.4	1,124
143	Serum Neurofilament Light Chain Levels Are Related to Small Vessel Disease Burden. Journal of Stroke, 2018, 20, 228-238.	3.2	82
144	STROKOG (stroke and cognition consortium): An international consortium to examine the epidemiology, diagnosis, and treatment of neurocognitive disorders in relation to cerebrovascular disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 7, 11-23.	2.4	41

#	Article	IF	CITATIONS
145	Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) as a model of small vessel disease: update on clinical, diagnostic, and management aspects. BMC Medicine, 2017, 15, 41.	5.5	212
146	Vascular Cognitive Impairment. Circulation Research, 2017, 120, 573-591.	4.5	385
147	Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology, 2017, 88, 1054-1061.	1.1	116
148	Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nature Genetics, 2017, 49, 946-952.	21.4	279
149	Atrial Fibrillation Genetic Risk and Ischemic Stroke Mechanisms. Stroke, 2017, 48, 1451-1456.	2.0	33
150	Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease. Stroke, 2017, 48, 1404-1407.	2.0	40
151	Inhibition of atherogenesis by the COP9 signalosome subunit 5 in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2766-E2775.	7.1	40
152	Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI. Neurobiology of Aging, 2017, 50, 152-162.	3.1	63
153	Predictors and Clinical Impact of Incident Lacunes in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2017, 48, 283-289.	2.0	25
154	Genetic variation at 16q24.2 is associated with small vessel stroke. Annals of Neurology, 2017, 81, 383-394.	5.3	73
155	<i>COL4A2</i> is associated with lacunar ischemic stroke and deep ICH. Neurology, 2017, 89, 1829-1839.	1.1	58
156	Validation of the Telephone Interview of Cognitive Status and Telephone Montreal Cognitive Assessment Against Detailed Cognitive Testing and Clinical Diagnosis of Mild Cognitive Impairment After Stroke. Stroke, 2017, 48, 2952-2957.	2.0	94
157	Cerebral Microbleeds and the Risk of Incident Ischemic Stroke in CADASIL (Cerebral Autosomal) Tj ETQq1 1 0.78- 2699-2703.	4314 rgBT 2.0	/Overlock 10 29
158	Defining Optimal Brain Health in Adults: A Presidential Advisory From the American Heart Association/American Stroke Association. Stroke, 2017, 48, e284-e303.	2.0	279
159	RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circulation Research, 2017, 121, 970-980.	4.5	210
160	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
161	Tractâ€specific white matter hyperintensities disrupt neural network function in Alzheimer's disease. Alzheimer's and Dementia, 2017, 13, 225-235.	0.8	49
162	Genetic variants influencing elevated myeloperoxidase levels increase risk of stroke. Brain, 2017, 140, 2663-2672.	7.6	12

#	Article	IF	CITATIONS
163	Genetic Imbalance in Patients with Cervical Artery Dissection. Current Genomics, 2017, 18, 206-213.	1.6	28
164	Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke. Scientific Reports, 2016, 6, 23207.	3.3	20
165	Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.	4.3	80
166	Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2016, 15, 695-707.	10.2	130
167	Shape of the Central Sulcus and Disability After Subcortical Stroke. Stroke, 2016, 47, 1023-1029.	2.0	12
168	Low-frequency and common genetic variation in ischemic stroke. Neurology, 2016, 86, 1217-1226.	1.1	141
169	Features and Determinants of Lacune Shape. Stroke, 2016, 47, 1258-1264.	2.0	11
170	Genetic Associations With White Matter Hyperintensities Confer Risk of Lacunar Stroke. Stroke, 2016, 47, 1174-1179.	2.0	22
171	Human Validation of Genes Associated With a Murine Atherosclerotic Phenotype. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1240-1246.	2.4	44
172	Enhanced resting-state functional connectivity between core memory-task activation peaks is associated with memory impairment in MCI. Neurobiology of Aging, 2016, 45, 43-49.	3.1	31
173	Cystatin C and Cardiovascular Disease. Journal of the American College of Cardiology, 2016, 68, 934-945.	2.8	109
174	METACOHORTS for the study of vascular disease and its contribution to cognitive decline and neurodegeneration: An initiative of the Joint Programme for Neurodegenerative Disease Research. Alzheimer's and Dementia, 2016, 12, 1235-1249.	0.8	82
175	Prediction of 3-year clinical course in CADASIL. Neurology, 2016, 87, 1787-1795.	1.1	24
176	A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.	5.3	250
177	Prevalence of Amyloid Positron Emission Tomographic Positivity in Poststroke Mild Cognitive Impairment. Stroke, 2016, 47, 2645-2648.	2.0	29
178	Absence of the Autophagy Adaptor SQSTM1/p62 Causes Childhood-Onset Neurodegeneration with Ataxia, Dystonia, and Gaze Palsy. American Journal of Human Genetics, 2016, 99, 735-743.	6.2	99
179	Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 2016, 36, 7428-7440.	3.6	530
180	Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nature Genetics, 2016, 48, 856-866.	21.4	520

#	Article	IF	CITATIONS
181	Third European Stroke Science Workshop. Stroke, 2016, 47, e178-86.	2.0	О
182	Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near <i>HABP2</i> . Stroke, 2016, 47, 307-316.	2.0	54
183	Gene-based pleiotropy across migraine with aura and migraine without aura patient groups. Cephalalgia, 2016, 36, 648-657.	3.9	47
184	Involvement of astrocyte and oligodendrocyte gene sets in migraine. Cephalalgia, 2016, 36, 640-647.	3.9	15
185	The migraine–stroke connection: A genetic perspective. Cephalalgia, 2016, 36, 658-668.	3.9	22
186	Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis. Human Molecular Genetics, 2016, 25, 1867-1874.	2.9	103
187	Causal Assessment of Serum Urate Levels inÂCardiometabolic Diseases Through a Mendelian Randomization Study. Journal of the American College of Cardiology, 2016, 67, 407-416.	2.8	138
188	Association of <i>MTHFR</i> C677T Genotype With Ischemic Stroke Is Confined to Cerebral Small Vessel Disease Subtype. Stroke, 2016, 47, 646-651.	2.0	50
189	Prevalence and characteristics of migraine in CADASIL. Cephalalgia, 2016, 36, 1038-1047.	3.9	73
190	Predictors of Clinical Worsening in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2016, 47, 4-11.	2.0	81
191	Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology, 2016, 86, 146-153.	1.1	91
192	High-risk plaque features can be detected in non-stenotic carotid plaques of patients with ischaemic stroke classified as cryptogenic using combined 18F-FDG PET/MR imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 270-279.	6.4	103
193	<i>APOE É</i> 2 is associated with white matter hyperintensity volume in CADASIL. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 199-203.	4.3	28
194	Consensus statement for diagnosis of subcortical small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 6-25.	4.3	173
195	Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalgia, 2016, 36, 604-614.	3.9	41
196	Pericytes are involved in the pathogenesis of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Annals of Neurology, 2015, 78, 887-900.	5.3	127
197	Acute infarcts cause focal thinning in remote cortex via degeneration of connecting fiber tracts. Neurology, 2015, 84, 1685-1692.	1.1	152
198	Concordance of genetic risk across migraine subgroups: Impact on current and future genetic association studies. Cephalalgia, 2015, 35, 489-499.	3.9	32

#	Article	IF	CITATIONS
199	Shared genetic basis for migraine and ischemic stroke. Neurology, 2015, 84, 2132-2145.	1.1	91
200	Different Imaging Strategies in Patients With Possible Basilar Artery Occlusion. Stroke, 2015, 46, 1840-1849.	2.0	5
201	Deficiency of the Stroke Relevant <i>HDAC9</i> Gene Attenuates Atherosclerosis in Accord With Allele-Specific Effects at 7p21.1. Stroke, 2015, 46, 197-202.	2.0	73
202	Genetic Overlap Between Diagnostic Subtypes of Ischemic Stroke. Stroke, 2015, 46, 615-619.	2.0	34
203	Heterozygous <i>HTRA1</i> mutations are associated with autosomal dominant cerebral small vessel disease. Brain, 2015, 138, 2347-2358.	7.6	147
204	Genetic Factors Influencing Coagulation Factor XIII B-Subunit Contribute to Risk of Ischemic Stroke. Stroke, 2015, 46, 2069-2074.	2.0	15
205	Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans. Stroke, 2015, 46, 2063-2068.	2.0	63
206	Cysteine-Sparing CADASIL Mutations in <i>NOTCH3</i> Show Proaggregatory Properties In Vitro. Stroke, 2015, 46, 786-792.	2.0	46
207	Reply to Liu et al.: Loss of TGF-Î ² signaling in CARASIL pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1694-E1694.	7.1	0
208	Family History in Young Patients With Stroke. Stroke, 2015, 46, 1975-1978.	2.0	11
209	Mapping 3-year changes in gray matter and metabolism in Aβ-positive nondemented subjects. Neurobiology of Aging, 2015, 36, 2913-2924.	3.1	23
210	Genetic Architecture of White Matter Hyperintensities Differs in Hypertensive and Nonhypertensive Ischemic Stroke. Stroke, 2015, 46, 348-353.	2.0	25
211	Differences in Common Genetic Predisposition to Ischemic Stroke by Age and Sex. Stroke, 2015, 46, 3042-3047.	2.0	28
212	Common NOTCH3 Variants and Cerebral Small-Vessel Disease. Stroke, 2015, 46, 1482-1487.	2.0	26
213	Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurology: Genetics, 2015, 1, e10.	1.9	61
214	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
215	Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection. Nature Genetics, 2015, 47, 78-83.	21.4	195
216	R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 2015, 36, 925-932.	3.1	122

#	Article	IF	CITATIONS
217	ADC Histograms from Routine DWI for Longitudinal Studies in Cerebral Small Vessel Disease: A Field Study in CADASIL. PLoS ONE, 2014, 9, e97173.	2.5	20
218	Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly. Frontiers in Aging Neuroscience, 2014, 6, 263.	3.4	34
219	Polygenic Overlap Between Kidney Function and Large Artery Atherosclerotic Stroke. Stroke, 2014, 45, 3508-3513.	2.0	21
220	A Novel MMP12 Locus Is Associated with Large Artery Atherosclerotic Stroke Using a Genome-Wide Age-at-Onset Informed Approach. PLoS Genetics, 2014, 10, e1004469.	3.5	75
221	Pathogenic Ischemic Stroke Phenotypes in the NINDS-Stroke Genetics Network. Stroke, 2014, 45, 3589-3596.	2.0	45
222	Strategic white matter tracts for processing speed deficits in age-related small vessel disease. Neurology, 2014, 82, 1946-1950.	1.1	116
223	Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16496-16501.	7.1	114
224	Prevalence of cortical superficial siderosis in patients with cognitive impairment. Journal of Neurology, 2014, 261, 277-282.	3.6	49
225	The Determinants of Dementia after Stroke (DEDEMAS) Study: Protocol and Pilot Data. International Journal of Stroke, 2014, 9, 387-392.	5.9	32
226	Predicting Stroke Through Genetic Risk Functions. Stroke, 2014, 45, 403-412.	2.0	62
227	Multilocus Genetic Risk Score Associates With Ischemic Stroke in Case–Control and Prospective Cohort Studies. Stroke, 2014, 45, 394-402.	2.0	56
228	Shared Genetic Susceptibility to Ischemic Stroke and Coronary Artery Disease. Stroke, 2014, 45, 24-36.	2.0	302
229	Second European Stroke Science Workshop. Stroke, 2014, 45, e113-22.	2.0	2
230	Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology, 2014, 83, 678-685.	1.1	89
231	Integrating Genetic, Transcriptional, and Functional Analyses to Identify 5 Novel Genes for Atrial Fibrillation. Circulation, 2014, 130, 1225-1235.	1.6	183
232	Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathologica Communications, 2014, 2, 96.	5.2	54
233	Meta-analysis of Genome-wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage. American Journal of Human Genetics, 2014, 94, 511-521.	6.2	235
234	Association of the novel single-nucleotide polymorphism which increases oxidized low-density lipoprotein levels with cerebrovascular disease events. Atherosclerosis, 2014, 234, 214-217.	0.8	12

#	Article	IF	CITATIONS
235	Effect of Genetic Variants Associated With Plasma Homocysteine Levels on Stroke Risk. Stroke, 2014, 45, 1920-1924.	2.0	30
236	Genome-Wide Genotyping Demonstrates a Polygenic Risk Score Associated With White Matter Hyperintensity Volume in CADASIL. Stroke, 2014, 45, 968-972.	2.0	33
237	Current concepts and clinical applications of stroke genetics. Lancet Neurology, The, 2014, 13, 405-418.	10.2	86
238	Impact of regional cortical and subcortical changes on processing speed in cerebral small vessel disease. NeuroImage: Clinical, 2013, 2, 854-861.	2.7	48
239	Using Phenotypic Heterogeneity to Increase the Power of Genomeâ€Wide Association Studies: Application to Age at Onset of Ischaemic Stroke Subphenotypes. Genetic Epidemiology, 2013, 37, 495-503.	1.3	10
240	Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, The, 2013, 12, 822-838.	10.2	3,919
241	Ischemic stroke is associated with the <i>ABO</i> locus: The EuroCLOT study. Annals of Neurology, 2013, 73, 16-31.	5.3	144
242	Education modifies the relation of vascular pathology to cognitive function: cognitive reserve in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Neurobiology of Aging, 2013, 34, 400-407.	3.1	54
243	Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurology, The, 2013, 12, 483-497.	10.2	1,269
244	Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nature Genetics, 2013, 45, 912-917.	21.4	338
245	Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. NeuroImage, 2013, 66, 177-183.	4.2	62
246	Genome-Wide Analysis of Blood Pressure Variability and Ischemic Stroke. Stroke, 2013, 44, 2703-2709.	2.0	17
247	Letter by Dichgans et al Regarding Article, "Peripheral Artery Disease as a Manifestation of Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy (CADASIL) and Practical Implicationsâ€+ Circulation, 2013, 128, e363.	1.6	2
248	17q25 Locus Is Associated With White Matter Hyperintensity Volume in Ischemic Stroke, But Not With Lacunar Stroke Status. Stroke, 2013, 44, 1609-1615.	2.0	42
249	Multiethnic Meta-Analysis of Genome-Wide Association Studies in >100 000 Subjects Identifies 23 Fibrinogen-Associated Loci but No Strong Evidence of a Causal Association Between Circulating Fibrinogen and Cardiovascular Disease. Circulation, 2013, 128, 1310-1324.	1.6	128
250	Genome-Wide Association Study of Vascular Dementia. Stroke, 2012, 43, 315-319.	2.0	51
251	Prevention of Vascular Cognitive Impairment. Stroke, 2012, 43, 3137-3146.	2.0	92
252	Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology, 2012, 79, 2025-2028.	1.1	189

#	Article	IF	CITATIONS
253	Extensive White Matter Hyperintensities May Increase Brain Volume in Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2012, 43, 3252-3257.	2.0	31
254	Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nature Genetics, 2012, 44, 328-333.	21.4	375
255	Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nature Genetics, 2012, 44, 1147-1151.	21.4	152
256	Genetic Heritability of Ischemic Stroke and the Contribution of Previously Reported Candidate Gene and Genomewide Associations. Stroke, 2012, 43, 3161-3167.	2.0	329
257	Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2012, 11, 951-962.	10.2	445
258	Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nature Genetics, 2012, 44, 777-782.	21.4	294
259	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
260	Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nature Genetics, 2010, 42, 869-873.	21.4	332
261	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	2.5	347
262	Advances in Genomic Analysis of Stroke. Stroke, 2010, 41, 825-832.	2.0	70
263	Advances in Stroke 2009. Stroke, 2010, 41, e63-6.	2.0	8
264	Three-Dimensional MRI Analysis of Individual Volume of Lacunes in CADASIL. Stroke, 2009, 40, 124-128.	2.0	24
265	Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine. Channels, 2009, 3, 82-87.	2.8	33
266	Cognition in CADASIL. Stroke, 2009, 40, S45-7.	2.0	37
267	CADASIL. Lancet Neurology, The, 2009, 8, 643-653.	10.2	939
268	Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Annals of Neurology, 2009, 65, 531-539.	5.3	199
269	A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nature Genetics, 2009, 41, 876-878.	21.4	434
270	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697

#	Article	IF	CITATIONS
271	Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Annals of Neurology, 2008, 64, 402-409.	5.3	253
272	Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurology, The, 2008, 7, 310-318.	10.2	229
273	Measurement of brain atrophy in subcortical vascular disease: A comparison of different approaches and the impact of ischaemic lesions. NeuroImage, 2008, 43, 312-320.	4.2	27
274	Divergent sodium channel defects in familial hemiplegic migraine. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9799-9804.	7.1	97
275	Diverse Functional Consequences of Mutations in the Na+/K+-ATPase α2-Subunit Causing Familial Hemiplegic Migraine Type 2. Journal of Biological Chemistry, 2008, 283, 31097-31106.	3.4	79
276	A high-density association screen of 155 ion transport genes for involvement with common migraine. Human Molecular Genetics, 2008, 17, 3318-3331.	2.9	90
277	Diagnostic Criteria of Vascular Dementia in CADASIL. Stroke, 2008, 39, 838-844.	2.0	31
278	Genetics of ischaemic stroke. Lancet Neurology, The, 2007, 6, 149-161.	10.2	364
279	The novel p.L1649Q mutation in theSCN1Aepilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Human Mutation, 2007, 28, 522-522.	2.5	89
280	Blood pressure and haemoglobin A1c are associated with microhaemorrhage in CADASIL: a two-centre cohort study. Brain, 2006, 129, 2375-2383.	7.6	176
281	National Institute of Neurological Disorders and Stroke–Canadian Stroke Network Vascular Cognitive Impairment Harmonization Standards. Stroke, 2006, 37, 2220-2241.	2.0	1,445
282	Genetic Association Studies in Stroke. Stroke, 2005, 36, 2027-2031.	2.0	140
283	Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet, The, 2005, 366, 371-377.	13.7	760
284	CADASIL: A Monogenic Condition Causing Stroke and Subcortical Vascular Dementia. Cerebrovascular Diseases, 2002, 13, 37-41.	1.7	95
285	Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Journal of the Neurological Sciences, 2002, 203-204, 77-80.	0.6	67
286	Clinical Characteristics and Frequency of the Hereditary Restless Legs Syndrome in a Population of 300 Patients. Sleep, 2000, 23, 1-6.	1.1	299
287	Third nerve palsy with contralateral ocular torsion and binocular tilt of visual vertical, indicating a midbrain lesion. Neuro-Ophthalmology, 1995, 15, 315-320.	1.0	14