Stephen Blair Hedges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2707094/publications.pdf

Version: 2024-02-01

70 papers 12,201 citations

37 h-index

94433

98798 67 g-index

72 all docs

72 docs citations

times ranked

72

17934 citing authors

#	Article	IF	CITATIONS
1	TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Molecular Biology and Evolution, 2017, 34, 1812-1819.	8.9	2,017
2	The Impact of Conservation on the Status of the World's Vertebrates. Science, 2010, 330, 1503-1509.	12.6	1,209
3	TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics, 2006, 22, 2971-2972.	4.1	1,096
4	Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 2001, 293, 1129-1133.	12.6	910
5	Tree of Life Reveals Clock-Like Speciation and Diversification. Molecular Biology and Evolution, 2015, 32, 835-845.	8.9	862
6	The origin and evolution of model organisms. Nature Reviews Genetics, 2002, 3, 838-849.	16.3	695
7	The conservation status of the world's reptiles. Biological Conservation, 2013, 157, 372-385.	4.1	642
8	New World direct-developing frogs (Anura: Terrarana): Molecular phylogeny, classification, biogeography, and conservation. Zootaxa, 2008, 1737, 1.	0.5	504
9	A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evolutionary Biology, 2004, 4, 2.	3.2	497
10	Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10092-10097.	7.1	321
11	Phylogenetics, classification, and biogeography of the treefrogs (Amphibia: Anura: Arboranae). Zootaxa, 2016, 4104, 1-109.	0.5	294
12	Precision of molecular time estimates. Trends in Genetics, 2004, 20, 242-247.	6.7	259
13	Genomic clocks and evolutionary timescales. Trends in Genetics, 2003, 19, 200-206.	6.7	257
14	Global priorities for conservation across multiple dimensions of mammalian diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7641-7646.	7.1	213
15	Mainland colonization by island lizards. Journal of Biogeography, 2005, 32, 929-938.	3.0	195
16	Ancestry of unisexual salamanders. Nature, 1992, 356, 708-710.	27.8	144
17	A global reptile assessment highlights shared conservation needs of tetrapods. Nature, 2022, 605, 285-290.	27.8	130
18	PALEOGEOGRAPHY OF THE ANTILLES AND ORIGIN OF WEST INDIAN TERRESTRIAL VERTEBRATES < sup>1 < /sup>. Annals of the Missouri Botanical Garden, 2006, 93, 231-244.	1.3	127

#	Article	IF	CITATIONS
19	Origin of tropical American burrowing reptiles by transatlantic rafting. Biology Letters, 2008, 4, 115-118.	2.3	127
20	A new skink fauna from Caribbean islands (Squamata, Mabuyidae, Mabuyinae). Zootaxa, 2012, 3288, 1.	0.5	123
21	A new frog family (Anura: Terrarana) from South America and an expanded direct-developing clade revealed by molecular phylogeny. Zootaxa, 2009, 2211, 1-35.	0.5	110
22	Blindsnake evolutionary tree reveals long history on Gondwana. Biology Letters, 2010, 6, 558-561.	2.3	98
23	Advances in Time Estimation Methods for Molecular Data. Molecular Biology and Evolution, 2016, 33, 863-869.	8.9	96
24	Vertebrate Genomes Compared. Science, 2002, 297, 1283-1285.	12.6	92
25	Phylogenomic support for evolutionary relationships of New World direct-developing frogs (Anura:) Tj ETQq1 1 (0.784314 2.7	rgBT /Overloc
26	The Timetree of Prokaryotes: New Insights into Their Evolution and Speciation. Molecular Biology and Evolution, 2017, 34, msw245.	8.9	69
27	Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Molecular Biology and Evolution, 2021, 38, 3332-3344.	8.9	56
28	Comparison of mode estimation methods and application in molecular clock analysis. BMC Bioinformatics, 2003, 4, 31.	2.6	49
29	Time best explains global variation in species richness of amphibians, birds and mammals. Journal of Biogeography, 2016, 43, 1069-1079.	3.0	49
30	Amniote phylogeny and the position of turtles. BMC Biology, 2012, 10, 64.	3.8	46
31	Haiti's biodiversity threatened by nearly complete loss of primary forest. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11850-11855.	7.1	46
32	Methodological congruence in phylogenomic analyses with morphological support for teiid lizards (Sauria: Teiidae). Molecular Phylogenetics and Evolution, 2016, 103, 75-84.	2.7	45
33	Species diversity as a surrogate for conservation of phylogenetic and functional diversity in terrestrial vertebrates across the Americas. Nature Ecology and Evolution, 2019, 3, 53-61.	7.8	45
34	Molecular phylogeny, classification, and biogeography of West Indian racer snakes of the Tribe Alsophiini (Squamata, Dipsadidae, Xenodontinae). Zootaxa, 2009, 2067, 1-28.	0.5	40
35	A start for population genomics. Nature, 2000, 408, 652-653.	27.8	39
36	Molecular phylogeny and historical biogeography of West Indian boid snakes (Chilabothrus). Molecular Phylogenetics and Evolution, 2013, 68, 461-470.	2.7	39

#	Article	IF	CITATIONS
37	Snake relationships revealed by slow-evolving proteins: a preliminary survey. Journal of Zoology, 1996, 240, 1-28.	1.7	38
38	<p class="HeadingRunIn">The high-level classification of skinks (Reptilia,) Tj ETQq0 0 0 rgB</p>	T /Overlock	10 ₃₈ 50 702
39	Global mammal beta diversity shows parallel assemblage structure in similar but isolated environments. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161028.	2.6	38
40	Global amphibian declines: a perspective from the Caribbean. Biodiversity and Conservation, 1993, 2, 290-303.	2.6	34
41	Molecular phylogeny and biogeography of the Antillean geckos Phyllodactylus wirshingi, Tarentola americana, and Hemidactylus haitianus (Reptilia, Squamata). Molecular Phylogenetics and Evolution, 2007, 45, 409-416.	2.7	34
42	Origin of invasive Florida frogs traced to Cuba. Biology Letters, 2011, 7, 407-410.	2.3	33
43	Evolutionary time drives global tetrapod diversity. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172378.	2.6	32
44	Molecular phylogeny and biogeography of West Indian frogs of the genus Leptodactylus (Anura,) Tj ETQq0 0 0	rgBŢ./Ovei	rlock 10 Tf 50
45	The signature of human pressure history on the biogeography of body mass in tetrapods. Global Ecology and Biogeography, 2017, 26, 1022-1034.	5.8	28
46	Undersampling Genomes has Biased Time and Rate Estimates Throughout the Tree of Life. Molecular Biology and Evolution, 2018, 35, 2077-2084.	8.9	26
47	Genomic timetree and historical biogeography of Caribbean island ameiva lizards (<i>Pholidoscelis</i> : Teiidae). Ecology and Evolution, 2017, 7, 7080-7090.	1.9	25
48	Colonizing the Caribbean: New geological data and an updated landâ€vertebrate colonization record challenge the GAARlandia landâ€bridge hypothesis. Journal of Biogeography, 2021, 48, 2699-2707.	3.0	25
49	Rapid chromosome evolution in Jamaican frogs of the genus <i>Eleutherodactylus</i> (Leptodactylidae). Journal of Zoology, 1995, 235, 9-31.	1.7	24
50	Tracing the history and biogeography of the Australian blindsnake radiation. Journal of Biogeography, 2013, 40, 928-937.	3.0	23
51	Accurate timetrees require accurate calibrations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9510-E9511.	7.1	22
52	An overview of the evolution and conservation of West Indian amphibians and reptiles. Applied Herpetology, 2006, 3, 281-292.	0.5	19
53	Environmental variation is a major predictor of global trait turnover in mammals. Journal of Biogeography, 2018, 45, 225-237.	3.0	17
54	Molecular and morphological data support recognition of a new genus of New World direct-developing frog (Anura: Terrarana) from an under-sampled region of South America. Zootaxa, 2015, 3986, 151-72.	0.5	15

#	Article	IF	CITATIONS
55	Caribbean hot spot. Nature, 1993, 364, 375-375.	27.8	13
56	Definition of the Caribbean Islands biogeographic region, with checklist and recommendations for standardized common names of amphibians and reptiles. Caribbean Herpetology, 0 , 1 -53.	0.0	12
57	Limitations of Phylogenomic Data Can Drive Inferred Speciation Rate Shifts. Molecular Biology and Evolution, 2022, 39, .	8.9	9
58	A replacement name for Isodactylus Hedges, Duellman, and Heinicke, 2008. Zootaxa, 2008, 1795, 67.	0.5	8
59	A new tuberculated <i>Pristimantis</i> (Anura, Terrarana, Strabomantidae) from the Venezuelan Andes, redescription of <i>Pristimantis pleurostriatus</i> , and variation within <i>Pristimantis vanadisae</i> . Zootaxa, 2013, 3647, 43-62.	0.5	7
60	A morphological and molecular revision of lizards of the genus MarisoraÂHedges & Department (Squamata: Mabuyidae) from Central America and Mexico, with descriptions of four new species. Zootaxa, 2020, 4763, zootaxa.4763.3.1.	0.5	6
61	Phylogenomic data resolve the historical biogeography and ecomorphs of Neotropical forest lizards (Squamata, Diploglossidae). Molecular Phylogenetics and Evolution, 2022, 175, 107577.	2.7	6
62	Phylogenetics, classification, and biogeography of the Neotropical forest lizards (Squamata,) Tj ETQq0 0 0 rgBT	Overlock 1	0 Jf 50 462 1
63	A revision of the green Anoles of Hispaniola with description of eight new species (Reptilia, Squamata,) Tj ETQq1	1 8.78431	.4 ₅ gBT /Over
64	Wormholes record species history in space and time. Biology Letters, 2013, 9, 20120926.	2.3	4
65	Endemism, invasion, and overseas dispersal: the phylogeographic history of the Lesser Antillean frog, Eleutherodactylus johnstonei. Biological Invasions, 2022, 24, 2707-2722.	2.4	3
66	A revision of the genus Audantia of Hispaniola with description of four new species (Reptilia:) Tj ETQq0 0 0 rgBT	Oyerlock I	10 ₂ Tf 50 302
67	Reply to Wampler et al.: Deforestation and biodiversity loss should not be sugarcoated. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5204-5204.	7.1	1
68	A new semifossorial snake of the genus Arrhyton (Squamata: Dipsadidae) from eastern Cuba, with taxonomic comments on other species. Zootaxa, 2021, 5052, 406-418.	0.5	1
69	On the taxonomic recognition of skinks from the Guadeloupe Archipelago (Squamata, Mabuyidae,) Tj ETQq $1\ 1\ 0$.784314 rş	gBT /Overlock
70	A replacement name for the Hispaniolan anole formerly referred to as, Anolis chlorocyanus Duméril & Lamp; Bibron, 1837. Caribbean Herpetology, 0, , 1-3.	0.0	0