Wen-wu Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2706965/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Research, 2022, 15, 2971-2976.	10.4	34
2	An insight, at the atomic level, into the intramolecular metallophilic interaction in nanoclusters. Chemical Communications, 2022, 58, 5092-5095.	4.1	5
3	Anomalous Phase Behaviors of Monolayer NaCl Aqueous Solutions Induced by Effective Coulombic Interactions within Angstrom-Scale Slits. Journal of Physical Chemistry Letters, 2022, 13, 2704-2710.	4.6	2
4	Atomic structure of a seed-sized gold nanoprism. Nature Communications, 2022, 13, 1235.	12.8	9
5	New structural insights into the stability of Au ₂₂ (SR) ₁₆ nanocluster under ring model guidance. Physical Chemistry Chemical Physics, 2022, 24, 15920-15924.	2.8	7
6	Toward Understanding the Correlation between the Charge States and the Core Structures in Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2022, 13, 5387-5393.	4.6	5
7	Understanding the Chemical Insights of Staple Motifs of Thiolateâ€Protected Gold Nanoclusters. Small, 2021, 17, e2001836.	10.0	19
8	A Homoleptic Alkynyl‣igated [Au 13 Ag 16 L 24] 3â^' Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie, 2021, 133, 983-988.	2.0	6
9	A Homoleptic Alkynylâ€Ligated [Au ₁₃ Ag ₁₆ L ₂₄] ^{3â^'} Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie - International Edition, 2021, 60, 970-975.	13.8	43
10	The alloying-induced electrical conductivity of metal–chalcogenolate nanowires. Chemical Communications, 2021, 57, 8774-8777.	4.1	2
11	Efficient Photoexcited Charge Separation at the Interface of a Novel 0D/2D Heterojunction: A Time-Dependent Ultrafast Dynamic Study. Journal of Physical Chemistry Letters, 2021, 12, 2312-2319.	4.6	23
12	Ring Model for Understanding How Interfacial Interaction Dictates the Structures of Protection Motifs and Gold Cores in Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2021, 12, 3006-3013.	4.6	17
13	Unraveling the Atomic Structures of 10-Electron (10e) Thiolate-Protected Gold Nanoclusters: Three Au32(SR)22 Isomers, One Au28(SR)18, and One Au33(SR)23. ACS Omega, 2021, 6, 10497-10503.	3.5	1
14	Au11Ag6 nanocluster: Controllable preparation, structural determination, and optical property investigation. Journal of Chemical Physics, 2021, 154, 184302.	3.0	8
15	[Au ₇ (SR) ₇] Ring as a New Type of Protection Ligand in a New Atomic Structure of Au ₁₅ (SR) ₁₃ Nanocluster. Journal of Physical Chemistry A, 2021, 125, 5933-5938.	2.5	11
16	Two-dimensional monolayer salt nanostructures can spontaneously aggregate rather than dissolve in dilute aqueous solutions. Nature Communications, 2021, 12, 5602.	12.8	12
17	Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chemical Science, 2021, 12, 3290-3294.	7.4	29
18	Synergistic Effects of Ternary PdO–CeO2–OMS-2 Catalyst Afford High Catalytic Performance and Stability in the Reduction of NO with CO. ACS Applied Materials & Interfaces, 2021, 13, 622-630.	8.0	28

Wen-wu Xu

#	Article	IF	CITATIONS
19	Application of grand unified model and ring model in understanding the isomeric structures of Au28(SR)20 nanoclusters. Chemical Physics Letters, 2021, 785, 139133.	2.6	4
20	Modulation of the Double-Helical Cores: A New Strategy for Structural Predictions of Thiolate-Protected Gold Nanoclusters. Journal of Physical Chemistry Letters, 2020, 11, 536-540.	4.6	16
21	Structural Transformations from Thiolate-Protected Gold Nanoclusters to Au(I)–S Complexes by Introducing Three-Coordinated μ43-Sulfido and Four-Coordinated μ44-Sulfido Motifs. Journal of Physical Chemistry C, 2020, 124, 16166-16170.	3.1	5
22	Multiturn Hollow Helices: Synthesis and Folding of Long Aromatic Oligoamides. Organic Letters, 2020, 22, 6938-6942.	4.6	10
23	Two-dimensional growth mode of thiolate-protected gold nanoclusters Au _{28+4n} (SR) _{20+2n} (<i>n</i> = 0–8): compared with their one-dimensional growth mode. Nanoscale, 2020, 12, 20677-20683.	5.6	15
24	Atomically Precise Copper Cluster with Intensely Near-Infrared Luminescence and Its Mechanism. Journal of Physical Chemistry Letters, 2020, 11, 4891-4896.	4.6	33
25	De novo design of Au36(SR)24 nanoclusters. Nature Communications, 2020, 11, 3349.	12.8	54
26	Structural predictions of thiolate-protected gold nanoclusters <i>via</i> the redistribution of Au–S "staple―motifs on known cores. Physical Chemistry Chemical Physics, 2020, 22, 16624-16629.	2.8	6
27	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	12.8	47
28	Medium-Sized Au ₅₈ (SR) ₃₀ : A New Chiral Structure Evolving from Crystallized Au ₄₀ (SR) ₂₄ and Au ₄₉ (SR) ₂₇ . Journal of Physical Chemistry C, 2020, 124, 9077-9081.	3.1	5
29	Chiral Au ₂₂ (SR) ₁₇ ^{â^²} : a new ligand-binding strategy for structural prediction of thiolate-protected gold nanocluster. Chemical Communications, 2020, 56, 2995-2998.	4.1	10
30	Insights into the effect of surface coordination on the structure and properties of Au ₁₃ Cu ₂ nanoclusters. Nanoscale, 2019, 11, 19393-19397.	5.6	15
31	Two-Dimensional Gold Sulfide Monolayers with Direct Band Gap and Ultrahigh Electron Mobility. Journal of Physical Chemistry Letters, 2019, 10, 3773-3778.	4.6	34
32	Two-Dimensional AuMX2 (M = Al, Ga, In; X = S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2018, 10, 16739-16746.	8.0	11
33	The structural isomerism in gold nanoclusters. Nanoscale, 2018, 10, 9476-9483.	5.6	37
34	Application of Electronic Counting Rules for Ligand-Protected Gold Nanoclusters. Accounts of Chemical Research, 2018, 51, 2739-2747.	15.6	105
35	Thiolate-Protected Hollow Gold Nanospheres. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 770-775.	4.9	1
36	Au ₃ (μ ₃ -S)(0e) elementary block: new insights into ligated gold clusters with μ ₃ -sulfido motifs. Nanoscale, 2017, 9, 8990-8996.	5.6	15

Wen-wu Xu

#	Article	IF	CITATIONS
37	Au13(8e): A secondary block for describing a special group of liganded gold clusters containing icosahedral Au13 motifs. Chemical Physics Letters, 2017, 675, 35-39.	2.6	25
38	Enforced Tubular Assembly of Electronically Different Hexakis(<i>m</i> -Phenylene Ethynylene) Macrocycles: Persistent Columnar Stacking Driven by Multiple Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2017, 139, 15950-15957.	13.7	39
39	Au ₆ S ₂ monolayer sheets: metallic and semiconducting polymorphs. Materials Horizons, 2017, 4, 1085-1091.	12.2	26
40	Correspondence: Reply to â€~On the bonding in ligand-protected gold clusters'. Nature Communications, 2017, 8, 1351.	12.8	7
41	A grand unified model for liganded gold clusters. Nature Communications, 2016, 7, 13574.	12.8	148
42	Unraveling a generic growth pattern in structure evolution of thiolate-protected gold nanoclusters. Nanoscale, 2016, 8, 7396-7401.	5.6	51
43	Medium-sized Au ₄₀ (SR) ₂₄ and Au ₅₂ (SR) ₃₂ nanoclusters with distinct gold-kernel structures and spectroscopic features. Nanoscale, 2016, 8, 1299-1304.	5.6	16
44	A Nearâ€Infraredâ€Emissive Alkynylâ€Protected Au ₂₄ Nanocluster. Angewandte Chemie - International Edition, 2015, 54, 9683-9686.	13.8	152
45	Unraveling the Atomic Structures of the Au ₆₈ (SR) ₃₄ Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 14224-14229.	3.1	29
46	Unraveling structures of protection ligands on gold nanoparticle Au ₆₈ (SH) ₃₂ . Science Advances, 2015, 1, e1400211.	10.3	41