Benjamin M Hogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2706856/publications.pdf

Version: 2024-02-01

78 papers 4,104 citations

36 h-index 60 g-index

88 all docs 88 docs citations

88 times ranked 4721 citing authors

#	Article	IF	CITATIONS
1	<i>Pkd1</i> and <i>Wnt5a</i> genetically interact to control lymphatic vascular morphogenesis in mice. Developmental Dynamics, 2022, 251, 336-349.	1.8	3
2	mafba and mafbb differentially regulate lymphatic endothelial cell migration in topographically distinct manners. Cell Reports, 2022, 39, 110982.	6.4	6
3	Network patterning, morphogenesis and growth in lymphatic vascular development. Current Topics in Developmental Biology, 2021, 143, 151-204.	2.2	3
4	Lymphatics and the Brain. Circulation Research, 2021, 128, 59-61.	4. 5	4
5	The zebrafish $i>grime < i>mutant uncovers an evolutionarily conserved role for Tmem 161b in the control of cardiac rhythm. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .$	7.1	12
6	Mechanotransduction activates RhoA in the neighbors of apoptotic epithelial cells to engage apical extrusion. Current Biology, 2021, 31, 1326-1336.e5.	3.9	45
7	Live-imaging of endothelial Erk activity reveals dynamic and sequential signalling events during regenerative angiogenesis. ELife, $2021,10,.$	6.0	24
8	3,4-Difluorobenzocurcumin Inhibits Vegfc-Vegfr3-Erk Signalling to Block Developmental Lymphangiogenesis in Zebrafish. Pharmaceuticals, 2021, 14, 614.	3.8	4
9	The RNA helicase Ddx21 controls Vegfc-driven developmental lymphangiogenesis by balancing endothelial cell ribosome biogenesis and p53 function. Nature Cell Biology, 2021, 23, 1136-1147.	10.3	17
10	Biallelic mutation of FBXL7 suggests a novel form of Hennekam syndrome. American Journal of Medical Genetics, Part A, 2020, 182, 189-194.	1.2	13
11	Endothelial Cell Dynamics in Vascular Development: Insights From Live-Imaging in Zebrafish. Frontiers in Physiology, 2020, 11, 842.	2.8	27
12	Localised Collagen2a1 secretion supports lymphatic endothelial cell migration in the zebrafish embryo. Development (Cambridge), 2020, 147, .	2. 5	7
13	Src kinases relax adherens junctions between the neighbors of apoptotic cells to permit apical extrusion. Molecular Biology of the Cell, 2020, 31, 2557-2569.	2.1	22
14	Deep conservation of the enhancer regulatory code in animals. Science, 2020, 370, .	12.6	89
15	<scp>MAFB</scp> modulates the maturation of lymphatic vascular networks in mice. Developmental Dynamics, 2020, 249, 1201-1216.	1.8	10
16	Atypical cadherin FAT4 orchestrates lymphatic endothelial cell polarity in response to flow. Journal of Clinical Investigation, 2020, 130, 3315-3328.	8.2	40
17	Evolutionary Differences in the Vegf/Vegfr Code Reveal Organotypic Roles for the Endothelial Cell Receptor Kdr in Developmental Lymphangiogenesis. Cell Reports, 2019, 28, 2023-2036.e4.	6.4	23
18	Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. Npj Regenerative Medicine, 2019, 4, 18.	5.2	37

#	Article	IF	CITATIONS
19	The Alternative Splicing Regulator Nova2 Constrains Vascular Erk Signaling to Limit Specification of the Lymphatic Lineage. Developmental Cell, 2019, 49, 279-292.e5.	7.0	35
20	Zebrafish facial lymphatics develop through sequential addition of venous and nonâ€venous progenitors. EMBO Reports, 2019, 20, .	4.5	46
21	Myosin Vb is required for correct trafficking of Nâ€cadherin and cardiac chamber ballooning. Developmental Dynamics, 2019, 248, 284-295.	1.8	6
22	Peri-arterial specification of vascular mural cells from na \tilde{A} ve mesenchyme requires Notch signaling. Development (Cambridge), 2019, 146, .	2.5	42
23	Yap1 promotes sprouting and proliferation of lymphatic progenitors downstream of Vegfc in the zebrafish trunk. ELife, 2019, 8, .	6.0	28
24	Notching a New Pathway in Vascular Flow Sensing. Trends in Cell Biology, 2018, 28, 173-175.	7.9	3
25	Brain drains: new insights into brain clearance pathways from lymphatic biology. Journal of Molecular Medicine, 2018, 96, 383-390.	3.9	33
26	Visualization and Tools for Analysis of Zebrafish Lymphatic Development. Methods in Molecular Biology, 2018, 1846, 55-70.	0.9	15
27	Junction-based lamellipodia drive endothelial cell rearrangements in vivo via a VE-cadherin-F-actin based oscillatory cell-cell interaction. Nature Communications, 2018, 9, 3545.	12.8	48
28	A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development (Cambridge), 2018, 145, .	2.5	64
29	Nppa and Nppb act redundantly during zebrafish cardiac development to confine AVC marker expression and reduce cardiac jelly volume. Development (Cambridge), 2018, 145, .	2.5	35
30	Utilising polymorphisms to achieve allele-specific genome editing in zebrafish. Biology Open, 2017, 6, 125-131.	1.2	19
31	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 123-136.	7.0	63
32	Vegfd modulates both angiogenesis and lymphangiogenesis during zebrafish embryonic development. Development (Cambridge), 2017, 144, 507-518.	2.5	56
33	Tmem2 Regulates Embryonic Vegf Signaling by Controlling Hyaluronic Acid Turnover. Developmental Cell, 2017, 40, 421.	7.0	12
34	Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nature Neuroscience, 2017, 20, 774-783.	14.8	91
35	SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial development. Development (Cambridge), 2017, 144, 2629-2639.	2.5	43
36	Genome-wide functional analysis reveals central signaling regulators of lymphatic endothelial cell migration and remodeling. Science Signaling, 2017, 10, .	3.6	37

#	Article	IF	CITATIONS
37	How to Plumb a Pisces: Understanding Vascular Development and Disease Using Zebrafish Embryos. Developmental Cell, 2017, 42, 567-583.	7.0	144
38	Live imaging molecular changes in junctional tension upon VE-cadherin in zebrafish. Nature Communications, 2017, 8, 1402.	12.8	73
39	Pharmacological targeting of the transcription factor SOX18 delays breast cancer in mice. ELife, 2017, 6, .	6.0	50
40	Expanding the genotypic spectrum of <i>CCBE1</i> mutations in Hennekam syndrome. American Journal of Medical Genetics, Part A, 2016, 170, 2694-2697.	1.2	7
41	Vegfa signaling promotes zebrafish intestinal vasculature development through endothelial cell migration from the posterior cardinal vein. Developmental Biology, 2016, 411, 115-127.	2.0	46
42	Diversity in the lymphatic vasculature. Nature, 2015, 522, 37-38.	27.8	6
43	Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB Journal, 2015, 29, 1999-2009.	0.5	24
44	Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish. Cell Reports, 2015, 13, 1828-1841.	6.4	118
45	Active contractility at E-cadherin junctions and its implications for cell extrusion in cancer. Cell Cycle, 2015, 14, 315-322.	2.6	39
46	<i>carbamoylâ€phosphate synthetase 2</i> , <i>aspartate transcarbamylase</i> , and <i>dihydroorotase</i> (<i>cad</i>) regulates Notch signaling and vascular development in zebrafish. Developmental Dynamics, 2015, 244, 1-9.	1.8	12
47	VE-cadherin in Vascular Development. Current Topics in Developmental Biology, 2015, 112, 325-352.	2.2	51
48	<i>mafba</i> is a downstream transcriptional effector of Vegfc signaling essential for embryonic lymphangiogenesis in zebrafish. Genes and Development, 2015, 29, 1618-1630.	5.9	63
49	ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases, 2014, 5, e975002.	1.6	35
50	Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development (Cambridge), 2014, 141, 1239-1249.	2. 5	145
51	Lymphatic vascular specification and its modulation during embryonic development. Microvascular Research, 2014, 96, 3-9.	2.5	3
52	Vegfd can compensate for loss of Vegfc in zebrafish facial lymphatic sprouting. Development (Cambridge), 2014, 141, 2680-2690.	2.5	58
53	Endothelial cell–cell adhesion during zebrafish vascular development. Cell Adhesion and Migration, 2014, 8, 136-145.	2.7	10
54	Arap3 is dysregulated in a mouse model of hypotrichosis–lymphedema–telangiectasia and regulates lymphatic vascular development. Human Molecular Genetics, 2014, 23, 1286-1297.	2.9	36

#	Article	IF	Citations
55	Pkd1 Regulates Lymphatic Vascular Morphogenesis during Development. Cell Reports, 2014, 7, 623-633.	6.4	77
56	VEGFD regulates blood vascular development by modulating SOX18 activity. Blood, 2014, 123, 1102-1112.	1.4	65
57	In vivo mutation of preâ€mRNA processing factor 8 (Prpf8) affects transcript splicing, cell survival and myeloid differentiation. FEBS Letters, 2013, 587, 2150-2157.	2.8	52
58	Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development (Cambridge), 2013, 140, 1857-1870.	2.5	121
59	Sox18 Genetically Interacts With VegfC to Regulate Lymphangiogenesis in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1238-1247.	2.4	38
60	The Wnt Receptor Ryk Plays a Role in Mammalian Planar Cell Polarity Signaling. Journal of Biological Chemistry, 2012, 287, 29312-29323.	3.4	83
61	The Transcriptional Control of Lymphatic Vascular Development. Physiology, 2011, 26, 146-155.	3.1	49
62	Transmembrane protein 2 (Tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development (Cambridge), 2011, 138, 4193-4198.	2.5	48
63	Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells. PLoS ONE, 2011, 6, e28934.	2.5	27
64	Role of Delta-like-4/Notch in the Formation and Wiring of the Lymphatic Network in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1695-1702.	2.4	118
65	Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development (Cambridge), 2009, 136, 4001-4009.	2.5	205
66	Functional analyses of human and zebrafish 18-amino acid in-frame deletion pave the way for domain mapping of the cerebral cavernous malformation 3 protein. Human Mutation, 2009, 30, 1003-1011.	2.5	64
67	ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nature Genetics, 2009, 41, 396-398.	21.4	409
68	Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nature Genetics, 2009, 41, 1272-1274.	21,4	269
69	Simple and Efficient Transgenesis with Meganuclease Constructs in Zebrafish. Methods in Molecular Biology, 2009, 546, 117-130.	0.9	66
70	Manipulation of Gene Expression During Zebrafish Embryonic Development Using Transient Approaches. Methods in Molecular Biology, 2008, 469, 273-300.	0.9	36
71	ccm1 cell autonomously regulates endothelial cellular morphogenesis and vascular tubulogenesis in zebrafish. Human Molecular Genetics, 2008, 17, 2424-2432.	2.9	100
72	CREB activity modulates neural cell proliferation, midbrain–hindbrain organization and patterning in zebrafish. Developmental Biology, 2007, 307, 127-141.	2.0	55

#	Article	IF	CITATIONS
73	Characterisation of duplicate zinc finger like 2 erythroid precursor genes in zebrafish. Development Genes and Evolution, 2006, 216, 523-529.	0.9	4
74	Specification of the Primitive Myeloid Precursor Pool Requires Signaling through Alk8 in Zebrafish. Current Biology, 2006, 16, 506-511.	3.9	47
75	Duplicate ZebrafishpthGenes Are Expressed along the Lateral Line and in the Central Nervous System during Embryogenesis. Endocrinology, 2005, 146, 547-551.	2.8	39
76	The Netrin receptor Neogenin is required for neural tube formation and somitogenesis in zebrafish. Developmental Biology, 2004, 269, 302-315.	2.0	55
77	Zebrafish gcm2 is required for gill filament budding from pharyngeal ectoderm. Developmental Biology, 2004, 276, 508-522.	2.0	55
78	Yan regulates Lozenge during Drosophila eye development. Development Genes and Evolution, 2002, 212, 267-276.	0.9	16