
Masumi Eto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2706789/publications.pdf Version: 2024-02-01

Μλεμμι Ετο

#	Article	IF	CITATIONS
1	A Novel Protein Phosphatase-1 Inhibitory Protein Potentiated by Protein Kinase C. Isolation from Porcine Aorta Media and Characterization1. Journal of Biochemistry, 1995, 118, 1104-1107.	1.7	291
2	Agonists Trigger G Protein-mediated Activation of the CPI-17 Inhibitor Phosphoprotein of Myosin Light Chain Phosphatase to Enhance Vascular Smooth Muscle Contractility. Journal of Biological Chemistry, 2000, 275, 9897-9900.	3.4	289
3	Molecular cloning of a novel phosphorylationâ€dependent inhibitory protein of protein phosphataseâ€1 (CPI17) in smooth muscle: its specific localization in smooth muscle ¹ . FEBS Letters, 1997, 410, 356-360.	2.8	228
4	Expression of CPIâ€17 and myosin phosphatase correlates with Ca 2+ sensitivity of protein kinase Câ€induced contraction in rabbit smooth muscle. Journal of Physiology, 2001, 535, 553-564.	2.9	214
5	Phosphorylation of the myosin phosphatase targeting subunit and CPIâ€17 during Ca 2+ Sensitization in Rabbit Smooth Muscle. Journal of Physiology, 2003, 546, 879-889.	2.9	205
6	Histamine-induced Vasoconstriction Involves Phosphorylation of a Specific Inhibitor Protein for Myosin Phosphatase by Protein Kinase C α and δ Isoforms. Journal of Biological Chemistry, 2001, 276, 29072-29078.	3.4	188
7	Possible involvement of the novel CPI-17 protein in protein kinase C signal transduction of rabbit arterial smooth muscle. Journal of Physiology, 1998, 508, 871-881.	2.9	158
8	Reconstitution of protein kinase Câ€induced contractile Ca ²⁺ sensitization in Triton Xâ€100â€demembranated rabbit arterial smooth muscle. Journal of Physiology, 1999, 520, 139-152.	2.9	141
9	RhoA-mediated Ca2+ Sensitization in Erectile Function. Journal of Biological Chemistry, 2002, 277, 30614-30621.	3.4	141
10	Ca 2+ -Dependent Rapid Ca 2+ Sensitization of Contraction in Arterial Smooth Muscle. Circulation Research, 2007, 100, 121-129.	4.5	139
11	Differential signalling by muscarinic receptors in smooth muscle: m2-mediated inactivation of myosin light chain kinase via Gi3, Cdc42/Rac1 and p21-activated kinase 1 pathway, and m3-mediated MLC20 (20ÂkDa) Tj targeting subunit 1 and protein kinase C/CPI-17 pathway. Biochemical Journal, 2003, 374, 145-155.	ETQq1	1 0,784314 134
12	Regulation of Cellular Protein Phosphatase-1 (PP1) by Phosphorylation of the CPI-17 Family, C-kinase-activated PP1 Inhibitors. Journal of Biological Chemistry, 2009, 284, 35273-35277.	3.4	128
13	Phosphorylation of the myosin phosphatase inhibitors, CPI-17 and PHI-1, by integrin-linked kinase. Biochemical Journal, 2002, 367, 517-524.	3.7	126
14	Activation of Myosin Light Chain Phosphatase in Intact Arterial Smooth Muscle During Nitric Oxide-induced Relaxation. Journal of Biological Chemistry, 2001, 276, 34681-34685.	3.4	124
15	Dual Ser and Thr phosphorylation of CPI-17, an inhibitor of myosin phosphatase, by MYPT-associated kinase. FEBS Letters, 2001, 493, 91-94.	2.8	105
16	Rho kinase and matrix metalloproteinase inhibitors cooperate to inhibit angiogenesis and growth of human prostate cancer xenotransplants. FASEB Journal, 2003, 17, 223-234.	0.5	96
17	Cerebellar Long-Term Synaptic Depression Requires PKC-Mediated Activation of CPI-17, a Myosin/Moesin Phosphatase Inhibitor. Neuron, 2002, 36, 1145-1158.	8.1	95
18	Phosphorylation-dependent Autoinhibition of Myosin Light Chain Phosphatase Accounts for Ca2+ Sensitization Force of Smooth Muscle Contraction. Journal of Biological Chemistry, 2009, 284, 21569-21579.	3.4	93

Masumi Eto

#	Article	IF	CITATIONS
19	A Novel Phosphoprotein Inhibitor of Protein Type-1 Phosphatase Holoenzymes. Biochemistry, 1999, 38, 16952-16957.	2.5	91
20	Phosphoprotein inhibitor CPI-17 specificity depends on allosteric regulation of protein phosphatase-1 by regulatory subunits. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8888-8893.	7.1	88
21	Inhibitor-2 Regulates Protein Phosphatase-1 Complexed with NimA-related Kinase to Induce Centrosome Separation. Journal of Biological Chemistry, 2002, 277, 44013-44020.	3.4	86
22	ldentification of Trimeric Myosin Phosphatase (PP1M) as a Target for a Novel PKC-Potentiated Protein Phosphatase-1 Inhibitory Protein (CPI17) in Porcine Aorta Smooth Muscle. Journal of Biochemistry, 1999, 125, 354-362.	1.7	85
23	RhoA-Rho kinase pathway mediates thrombin- and U-46619-induced phosphorylation of a myosin phosphatase inhibitor, CPI-17, in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2005, 289, C352-C360.	4.6	60
24	Reconstituted Human Myosin Light Chain Phosphatase Reveals Distinct Roles of Two Inhibitory Phosphorylation Sites of the Regulatory Subunit, MYPT1. Biochemistry, 2014, 53, 2701-2709.	2.5	59
25	Agonist- and depolarization-induced signals for myosin light chain phosphorylation and force generation of cultured vascular smooth muscle cells. Journal of Cell Science, 2006, 119, 1769-1780.	2.0	58
26	Defining the Structural Determinants and a Potential Mechanism for Inhibition of Myosin Phosphatase by the Protein Kinase C-potentiated Inhibitor Protein of 17 kDa. Journal of Biological Chemistry, 2001, 276, 39858-39863.	3.4	52
27	Phosphorylation of the Myosin-binding Subunit of Myosin Phosphatase by Raf-1 and Inhibition of Phosphatase Activity. Journal of Biological Chemistry, 2002, 277, 3053-3059.	3.4	51
28	Thromboxane A2-induced Bi-directional Regulation of Cerebral Arterial Tone. Journal of Biological Chemistry, 2009, 284, 6348-6360.	3.4	48
29	Nitric oxideâ€induced biphasic mechanism of vascular relaxation via dephosphorylation of CPlâ€17 and MYPT1. Journal of Physiology, 2009, 587, 3587-3603.	2.9	46
30	Phosphorylation-Induced Conformational Switching of CPI-17 Produces a Potent Myosin Phosphatase Inhibitor. Structure, 2007, 15, 1591-1602.	3.3	45
31	Inhibition of myosin/moesin phosphatase by expression of the phosphoinhibitor protein CPI-17 alters microfilament organization and retards cell spreading. Cytoskeleton, 2000, 46, 222-234.	4.4	41
32	CPI-17-deficient smooth muscle of chicken. Journal of Physiology, 2004, 557, 515-528.	2.9	41
33	ROCK Mediates Phorbol Ester-induced Apoptosis in Prostate Cancer Cells via p21Cip1 Up-regulation and JNK. Journal of Biological Chemistry, 2009, 284, 29365-29375.	3.4	41
34	Phosphorylation of protein phosphatase type-1 inhibitory proteins by integrin-linked kinase and cyclic nucleotide-dependent protein kinases. Biochemical and Biophysical Research Communications, 2003, 306, 382-387.	2.1	39
35	Solution NMR structure of the myosin phosphatase inhibitor protein CPI-17 shows phosphorylation-induced conformational changes responsible for activation 1 1Edited by P. E. Wright. Journal of Molecular Biology, 2001, 314, 839-849.	4.2	38
36	Assembly of MYPT1 with protein phosphatase-1 in fibroblasts redirects localization and reorganizes the actin cytoskeleton. Cytoskeleton, 2005, 62, 100-109.	4.4	38

Маѕимі Ето

#	Article	IF	CITATIONS
37	Caffeine relaxes smooth muscle through actin depolymerization. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 303, L334-L342.	2.9	35
38	Interleukin 6 mediates production of interleukin 10 in metastatic melanoma. Cancer Immunology, Immunotherapy, 2012, 61, 145-155.	4.2	32
39	Diversity and plasticity in signaling pathways that regulate smooth muscle responsiveness: Paradigms and paradoxes for the myosin phosphatase, the master regulator of smooth muscle contraction. Journal of Smooth Muscle Research, 2017, 53, 1-19.	1.2	32
40	Association of the Tensin N-terminal Protein-tyrosine Phosphatase Domain with the α Isoform of Protein Phosphatase-1 in Focal Adhesions. Journal of Biological Chemistry, 2007, 282, 17806-17815.	3.4	31
41	Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life, 2012, 64, 732-739.	3.4	28
42	Molecular Mechanism of Telokin-mediated Disinhibition of Myosin Light Chain Phosphatase and cAMP/cGMP-induced Relaxation of Gastrointestinal Smooth Muscle. Journal of Biological Chemistry, 2012, 287, 20975-20985.	3.4	24
43	Uncoupling of GPCR and RhoA-induced Ca2+-sensitization of chicken amnion smooth muscle lacking CPI-17. FEBS Letters, 2004, 578, 73-79.	2.8	23
44	Reciprocal regulation controlling the expression of CPI-17, a specific inhibitor protein for the myosin light chain phosphatase in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2012, 303, C58-C68.	4.6	23
45	Protein phosphatases 1 and 2A and their naturally occurring inhibitors: current topics in smooth muscle physiology and chemical biology. Journal of Physiological Sciences, 2018, 68, 1-17.	2.1	22
46	Roles of the Amino Acid Side Chains in the Actin-Binding S-Site of Myosin Heavy Chain1. Journal of Biochemistry, 1990, 108, 499-504.	1.7	18
47	Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells. Biochemical and Biophysical Research Communications, 2013, 434, 137-142.	2.1	17
48	Distinctive Solution Conformation of Phosphatase Inhibitor CPI-17 Substituted with Aspartate at the Phosphorylation-site Threonine Residue. Journal of Molecular Biology, 2003, 326, 1539-1547.	4.2	16
49	Y27632, a Rhoâ€activated kinase inhibitor, normalizes dysregulation in alpha1â€adrenergic receptorâ€induced contraction of Lyon hypertensive rat artery smooth muscle. Fundamental and Clinical Pharmacology, 2009, 23, 169-178.	1.9	15
50	Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. Journal of Cell Science, 2002, 115, 3739-3745.	2.0	14
51	Expression of CPI-17 in smooth muscle during embryonic development and in neointimal lesion formation. Histochemistry and Cell Biology, 2009, 132, 191-198.	1.7	13
52	Remodeling of the rat distal colon in diabetes: function and ultrastructure. American Journal of Physiology - Cell Physiology, 2016, 310, C151-C160.	4.6	13
53	RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na ⁺ /H ⁺ exchanger. Science Signaling, 2018, 11, .	3.6	13
54	F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain. American Journal of Physiology - Cell Physiology, 2016, 310, C89-C98.	4.6	12

Masumi Eto

#	Article	IF	CITATIONS
55	MARK2 regulates directed cell migration through modulation of myosin II contractility and focal adhesion organization. Current Biology, 2022, 32, 2704-2718.e6.	3.9	12
56	Phospho-Pivot Modeling Predicts Specific Interactions of Protein Phosphatase-1 with a Phospho-Inhibitor Protein CPI-17. Journal of Biochemistry, 2005, 137, 633-641.	1.7	11
57	Unfair competition governs the interaction of pCPI-17 with myosin phosphatase (PP1-MYPT1). ELife, 2017, 6, .	6.0	10
58	Effects of a fluorescent myosin light chain phosphatase inhibitor on prostate cancer cells. Frontiers in Oncology, 2011, 1, 27.	2.8	9
59	Phosphoprotein Inhibitors of Protein Phosphatase-1. Methods in Enzymology, 2003, 366, 241-260.	1.0	8
60	Solution structure of the inhibitory phosphorylation domain of myosin phosphatase targeting subunit 1. Proteins: Structure, Function and Bioinformatics, 2009, 77, 732-735.	2.6	8
61	Heat shock augments angiotensin II-induced vascular contraction through increased production of reactive oxygen species. Biochemical and Biophysical Research Communications, 2010, 399, 452-457.	2.1	8
62	Reactivities of Cys707 (SH1) in Intermediate States of Myosin Subfragment-1 ATPase. Journal of Biochemistry, 1998, 124, 609-614.	1.7	7
63	A temporal Ca ²⁺ desensitization of myosin light chain kinase in phasic smooth muscles induced by CaMKKβ/PP2A pathways. American Journal of Physiology - Cell Physiology, 2021, 321, C549-C558.	4.6	6
64	Computational simulation for interactions of nano-molecules: The phospho-pivot modeling algorithm for prediction of interactions between a phospho-protein and its receptor. Science and Technology of Advanced Materials, 2005, 6, 463-467.	6.1	5
65	Kinase activity-tagged western blotting assay. BioTechniques, 2020, 68, 211-213.	1.8	4
66	Overexpression of progranulin increases pathological protein accumulation by suppressing autophagic flux. Biochemical and Biophysical Research Communications, 2022, 611, 78-84.	2.1	3
67	Localization of 17-kDa Myosin Light Chain Isoforms in Cultured Aortic Smooth Muscle Cells. Journal of Biochemistry, 1999, 125, 334-342.	1.7	2
68	Possible roles of N- and C-terminal unstructured tails of CPI-17 in regulating Ca ²⁺ sensitization force of smooth muscle. Journal of Smooth Muscle Research, 2022, 58, 22-33.	1.2	2
69	<title>Fluorescence lifetime imaging of green fluorescent protein in a single living cell</title> . , 1999, 3604, 6.		1
70	Phosphorylation-induced conformational change responsible for the function of a myosin phosphatase inhibitor, CPI-17. Science and Technology of Advanced Materials, 2004, 5, 383-386.	6.1	1
71	Assay for Three-Way Interaction of Protein Phosphatase-1 (Glc7) With Regulatory Subunits Plus Phosphatase Inhibitor-2. , 2007, 365, 197-208.		1
72	Endogenous inhibitor proteins that connect Ser/Thr kinases and phosphatases in cell signaling. IUBMB Life, 2012, 64, scope-scope.	3.4	1

Маѕимі Ето

#	Article	IF	CITATIONS
73	Mechanism of myosin phosphatase inhibition via phosphorylation of MYPT1 subunit by RhoA/ROCK. FASEB Journal, 2008, 22, 965.10.	0.5	1
74	Abemaciclib and Vacuolin-1 induce vacuole-like autolysosome formation – A new tool to study autophagosome-lysosome fusion. Biochemical and Biophysical Research Communications, 2022, 614, 191-197.	2.1	1
75	Inhibition of Acto-Myosin Subfragment-1 ATPase Activity by Peptides Corresponding to Various Segments of the 20-kDa Domain of Myosin Heavy Chain1. Journal of Biochemistry, 1994, 115, 701-707.	1.7	0
76	Structural Basis of a Myosin Phosphatase Inhibitory Protein, CPI-17. Seibutsu Butsuri, 2005, 45, 72-77.	0.1	0
77	Cpi17. The AFCS-nature Molecule Pages, 0, , .	0.2	0
78	Png. The AFCS-nature Molecule Pages, 0, , .	0.2	0
79	Abstract 1913: Proinflammatory cytokine, Interleukin-6 (IL-6), promotes Interleukin-10 (IL-10) production from melanoma cell via JAK/STAT3 and Raf/ERK signal pathways. , 2010, , .		0
80	An Actin-Binding Site on Myosin. , 1991, , 39-48.		0