
Thomas E Prisinzano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2705900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence for the Involvement of Dopamine Transporters in Behavioral Stimulant Effects of Modafinil. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 738-746.	2.5	169
2	Gedunin, a Novel Hsp90 Inhibitor: Semisynthesis of Derivatives and Preliminary Structureâ´'Activity Relationships. Journal of Medicinal Chemistry, 2008, 51, 6495-6502.	6.4	146
3	Monohydroxylated metabolites of the K2 synthetic cannabinoid JWH-073 retain intermediate to high cannabinoid 1 receptor (CB1R) affinity and exhibit neutral antagonist to partial agonist activity. Biochemical Pharmacology, 2012, 83, 952-961.	4.4	143
4	Neoclerodane Diterpenes as a Novel Scaffold for μ Opioid Receptor Ligandsâ€. Journal of Medicinal Chemistry, 2005, 48, 4765-4771.	6.4	139
5	Development of Functionally Selective, Small Molecule Agonists at Kappa Opioid Receptors. Journal of Biological Chemistry, 2013, 288, 36703-36716.	3.4	123
6	R-Modafinil (Armodafinil): A Unique Dopamine Uptake Inhibitor and Potential Medication for Psychostimulant Abuse. Biological Psychiatry, 2012, 72, 405-413.	1.3	121
7	Human psychopharmacology and dose-effects of salvinorin A, a kappa opioid agonist hallucinogen present in the plant Salvia divinorum. Drug and Alcohol Dependence, 2011, 115, 150-155.	3.2	120
8	Reactive Oxygen and Targeted Antioxidant Administration in Endothelial Cell Mitochondria. Journal of Biological Chemistry, 2006, 281, 39766-39775.	3.4	106
9	Neuropharmacology of the Naturally Occurring κ-Opioid Hallucinogen Salvinorin A. Pharmacological Reviews, 2011, 63, 316-347.	16.0	106
10	Role of Ventral Subiculum in Context-Induced Relapse to Alcohol Seeking after Punishment-Imposed Abstinence. Journal of Neuroscience, 2016, 36, 3281-3294.	3.6	103
11	Dose-related effects of salvinorin A in humans: dissociative, hallucinogenic, and memory effects. Psychopharmacology, 2013, 226, 381-392.	3.1	101
12	Psychopharmacology of the hallucinogenic sage Salvia divinorum. Life Sciences, 2005, 78, 527-531.	4.3	99
13	Kappa opioids and the modulation of pain. Psychopharmacology, 2010, 210, 109-119.	3.1	95
14	Salvinorin A Analogs as Probes in Opioid Pharmacology. Chemical Reviews, 2008, 108, 1732-1743.	47.7	90
15	Synthesis and κ-Opioid Receptor Activity of Furan-Substituted Salvinorin A Analogues. Journal of Medicinal Chemistry, 2014, 57, 10464-10475.	6.4	87
16	Dopamine transport inhibitors based on GBR12909 and benztropine as potential medications to treat cocaine addiction. Biochemical Pharmacology, 2008, 75, 2-16.	4.4	77
17	Pharmacokinetics of the plant-derived κ-opioid hallucinogen salvinorin A in nonhuman primates. Synapse, 2005, 58, 208-210.	1.2	74
18	Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism. Neuropharmacology, 2014, 86, 228-240.	4.1	69

#	Article	IF	CITATIONS
19	Salvinorin A: Allosteric Interactions at the μ-Opioid Receptor. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 801-810.	2.5	67
20	Flavonoids as Opioid Receptor Ligands:  Identification and Preliminary Structureâ^'Activity Relationships. Journal of Natural Products, 2007, 70, 1278-1282.	3.0	66
21	Effect of kappa-opioid receptor agonists U69593, U50488H, spiradoline and salvinorin A on cocaine-induced drug-seeking in rats. Pharmacology Biochemistry and Behavior, 2009, 94, 244-249.	2.9	65
22	A facile method for the preparation of deuterium labeled salvinorin A: synthesis of [2,2,2-2H3]-salvinorin A. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5099-5102.	2.2	62
23	k Opioids as potential treatments for stimulant dependence. AAPS Journal, 2005, 7, E592-E599.	4.4	62
24	Herkinorin Analogues with Differential β-Arrestin-2 Interactions. Journal of Medicinal Chemistry, 2008, 51, 2421-2431.	6.4	62
25	SARs at the Monoamine Transporters for a Novel Series of Modafinil Analogues. ACS Medicinal Chemistry Letters, 2011, 2, 48-52.	2.8	60
26	Determination of Salvinorin A in body fluids by high performance liquid chromatography–atmospheric pressure chemical ionization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2005, 818, 221-225.	2.3	58
27	Discovery of a Novel Selective Kappa-Opioid Receptor Agonist Using Crystal Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2013, 53, 521-526.	5.4	58
28	Salvinicins A and B, New Neoclerodane Diterpenes fromSalviadivinorum. Organic Letters, 2005, 7, 3017-3020.	4.6	57
29	A comparison of noninternalizing (herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence. Synapse, 2007, 61, 166-175.	1.2	57
30	High-dose fenfluramine administration decreases serotonin transporter binding, but not serotonin transporter protein levels, in rat forebrain. Synapse, 2003, 50, 233-239.	1.2	56
31	Behavioral and Physiological Effects of a Novel Kappa-Opioid Receptor-Based DREADD in Rats. Neuropsychopharmacology, 2016, 41, 402-409.	5.4	56
32	Synthesis and determination of the absolute configuration of the enantiomers of modafinil. Tetrahedron: Asymmetry, 2004, 15, 1053-1058.	1.8	55
33	Effects of Salvinorin A, a κ-Opioid Hallucinogen, on a Neuroendocrine Biomarker Assay in Nonhuman Primates with High κ-Receptor Homology to Humans. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 300-306.	2.5	54
34	Antinociceptive effects of herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: New concepts in mu opioid receptor pharmacology: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence, 2012, 121, 181-188.	3.2	53
35	Synthetic Studies of Neoclerodane Diterpenes fromSalviadivinorum:Â Semisynthesis of Salvinicins A and B and Other Chemical Transformations of Salvinorin Aâ€. Journal of Natural Products, 2006, 69, 107-112.	3.0	52
36	Synthesis of Salvinorin A Analogues as Opioid Receptor Probes. Journal of Natural Products, 2006, 69, 914-918.	3.0	52

#	Article	IF	CITATIONS
37	Unconditioned Behavioral Effects of the Powerful κ-Opioid Hallucinogen Salvinorin A in Nonhuman Primates: Fast Onset and Entry into Cerebrospinal Fluid. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 588-597.	2.5	52
38	Natural Products as Tools for Neuroscience: Discovery and Development of Novel Agents to Treat Drug Abuse. Journal of Natural Products, 2009, 72, 581-587.	3.0	52
39	Evaluation of the transport, in vitro metabolism and pharmacokinetics of Salvinorin A, a potent hallucinogen. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72, 471-477.	4.3	50
40	Reinstatement of methamphetamine seeking in male and female rats treated with modafinil and allopregnanolone. Drug and Alcohol Dependence, 2012, 120, 233-237.	3.2	50
41	Uptake, Distribution and Diffusivity of Reactive Fluorophores in Cells: Implications toward Target Identification. Molecular Pharmaceutics, 2010, 7, 1301-1310.	4.6	49
42	Structure–Activity Relationship Studies of Functionally Selective Kappa Opioid Receptor Agonists that Modulate ERK 1/2 Phosphorylation While Preserving G Protein Over βArrestin2 Signaling Bias. ACS Chemical Neuroscience, 2015, 6, 1411-1419.	3.5	48
43	Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Selective modification of the furan ring. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3170-3174.	2.2	47
44	Salvinorin A Analogs and Other Kappa-Opioid Receptor Compounds as Treatments for Cocaine Abuse. Advances in Pharmacology, 2014, 69, 481-511.	2.0	47
45	Synthetic Studies of Neoclerodane Diterpenes from Salvia divinorum:  Preparation and Opioid Receptor Activity of Salvinicin Analogues. Journal of Medicinal Chemistry, 2007, 50, 3596-3603.	6.4	46
46	Assessment of the kappa opioid agonist, salvinorin A, as a punisher of drug self-administration in monkeys. Psychopharmacology, 2014, 231, 2751-2758.	3.1	44
47	Discovery of Small Molecule Kappa Opioid Receptor Agonist and Antagonist Chemotypes through a HTS and Hit Refinement Strategy. ACS Chemical Neuroscience, 2012, 3, 221-236.	3.5	42
48	Azaphilones Inhibit Tau Aggregation and Dissolve Tau Aggregates <i>in Vitro</i> . ACS Chemical Neuroscience, 2015, 6, 751-760.	3.5	42
49	Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. Biochemical Journal, 2010, 431, 51-61.	3.7	41
50	Design, Synthesis, and Biological Evaluation of Aminoalkylindole Derivatives as Cannabinoid Receptor Ligands with Potential for Treatment of Alcohol Abuse. Journal of Medicinal Chemistry, 2013, 56, 4537-4550.	6.4	39
51	Enzyme-Mediated Protein Haptenation of Dapsone and Sulfamethoxazole in Human Keratinocytes: I. Expression and Role of Cytochromes P450. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 488-496.	2.5	38
52	Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus. Neuropharmacology, 2015, 99, 600-609.	4.1	38
53	Strategies for Developing <i>κ</i> Opioid Receptor Agonists for the Treatment of Pain with Fewer Side Effects. Journal of Pharmacology and Experimental Therapeutics, 2020, 375, 332-348.	2.5	37
54	The discriminative effects of the κ-opioid hallucinogen salvinorin A in nonhuman primates: dissociation from classic hallucinogen effects. Psychopharmacology, 2010, 210, 253-262.	3.1	36

THOMAS E PRISINZANO

#	Article	IF	CITATIONS
55	Potential drug abuse therapeutics derived from the hallucinogenic natural product salvinorin A. MedChemComm, 2011, 2, 1217.	3.4	36
56	Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys Experimental and Clinical Psychopharmacology, 2010, 18, 395-408.	1.8	35
57	Synthetic Studies of Neoclerodane Diterpenes from <i>Salvia divinorum:</i> Identification of a Potent and Centrally Acting μ Opioid Analgesic with Reduced Abuse Liability. Journal of Medicinal Chemistry, 2016, 59, 11027-11038.	6.4	35
58	Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 487-499.	2.5	35
59	Kappa opioid agonists reduce oxycodone self-administration in male rhesus monkeys. Psychopharmacology, 2020, 237, 1471-1480.	3.1	34
60	Synthetic studies of neoclerodane diterpenes from Salvia divinorum: Exploration of the 1-position. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 6111-6115.	2.2	32
61	The unique psychostimulant profile of (±)â€modafinil: investigation of behavioral and neurochemical effects in mice. European Journal of Neuroscience, 2017, 45, 167-174.	2.6	32
62	Semisynthetic neoclerodanes as kappa opioid receptor probes. Bioorganic and Medicinal Chemistry, 2012, 20, 3100-3110.	3.0	31
63	Synthesis and determination of the absolute stereochemistry of the enantiomers of adrafinil and modafinil. Tetrahedron: Asymmetry, 2004, 15, 3811-3815.	1.8	30
64	Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of opioid receptor affinity. Tetrahedron, 2008, 64, 10041-10048.	1.9	30
65	Opioid Receptor Probes Derived from Cycloaddition of the Hallucinogen Natural Product Salvinorin A. Journal of Natural Products, 2011, 74, 718-726.	3.0	30
66	Functional Selectivity of Kappa Opioid Receptor Agonists in Peripheral Sensory Neurons. Journal of Pharmacology and Experimental Therapeutics, 2015, 355, 174-182.	2.5	30
67	Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents. Molecules, 2018, 23, 2602.	3.8	29
68	Synthesis and biological activity of 8β-substituted hydrocodone indole and hydromorphone indole derivatives. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 165-168.	2.2	28
69	The Acute Effects of the Atypical Dissociative Hallucinogen Salvinorin A on Functional Connectivity in the Human Brain. Scientific Reports, 2020, 10, 16392.	3.3	28
70	Impact of Pharmacological Manipulation of the <i>κ</i> -Opioid Receptor System on Self-grooming and Anhedonic-like Behaviors in Male Mice. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 1-8.	2.5	27
71	lmidazoline-modified benzylimidazolines as h5-HT1D/1B serotonergic ligands. Bioorganic and Medicinal Chemistry, 2001, 9, 613-619.	3.0	26
72	Synthesis and Opioid Activity of Tyr ¹ â€ <i>ï^</i> [(<i>Z</i>)CF=CH]â€Gly ² and Tyr ¹ â€ <i>ï</i> [(<i>S</i>)/(<i>R</i>)â€CF ₃ CHâ€NH]â€Gly ² Leuâ€enkeph Fluorinated Peptidomimetics. ChemMedChem, 2017, 12, 571-576.	nalm2	26

THOMAS E PRISINZANO

#	Article	IF	CITATIONS
73	Novel psychotherapeutics – a cautiously optimistic focus on Hallucinogens. Expert Review of Clinical Pharmacology, 2018, 11, 1-3.	3.1	26
74	Role of dopamine transporter (DAT) in dopamine transport across the nasal mucosa. Life Sciences, 2006, 79, 1391-1398.	4.3	25
75	Synthetic studies of neoclerodane diterpenes from Salvia divinorum: role of the furan in affinity for opioid receptors. Organic and Biomolecular Chemistry, 2009, 7, 3748.	2.8	24
76	Identification of a novel "almost neutral―μâ€opioid receptor antagonist in CHO cells expressing the cloned human μâ€opioid receptor. Synapse, 2010, 64, 280-288.	1.2	24
77	Characterization of kappa opioid receptor mediated, dynorphin-stimulated [35S]GTPÎ ³ S binding in mouse striatum for the evaluation of selective KOR ligands in an endogenous setting. Neuropharmacology, 2015, 99, 131-141.	4.1	24
78	The C-2 derivatives of salvinorin A, ethoxymethyl ether Sal B and β-tetrahydropyran Sal B, have anti-cocaine properties with minimal side effects. Psychopharmacology, 2017, 234, 2499-2514.	3.1	24
79	Addressing Structural Flexibility at the A-Ring on Salvinorin A: Discovery of a Potent Kappa-Opioid Agonist with Enhanced Metabolic Stability. Journal of Medicinal Chemistry, 2017, 60, 3866-3878.	6.4	24
80	Synthetic Studies of Neoclerodane Diterpenes from <i>Salvia divinorum</i> : Design, Synthesis, and Evaluation of Analogues with Improved Potency and G-protein Activation Bias at the μ-Opioid Receptor. ACS Chemical Neuroscience, 2020, 11, 1781-1790.	3.5	22
81	Cannabinoid agonists increase the interaction between β-Arrestin 2 and ERK1/2 and upregulate β-Arrestin 2 and 5-HT2A receptors. Pharmacological Research, 2013, 68, 46-58.	7.1	21
82	A single injection of a novel kappa opioid receptor agonist salvinorin A attenuates the expression of cocaine-induced behavioral sensitization in rats. Behavioural Pharmacology, 2012, 23, 162-170.	1.7	20
83	Synergistic blockade of alcohol escalation drinking in mice by a combination of novel kappa opioid receptor agonist Mesyl Salvinorin B and naltrexone. Brain Research, 2017, 1662, 75-86.	2.2	20
84	Evaluation of Biased and Balanced Salvinorin A Analogs in Preclinical Models of Pain. Frontiers in Neuroscience, 2020, 14, 765.	2.8	20
85	Chemical methods for the synthesis and modification of neoclerodane diterpenes. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 5490-5495.	2.2	19
86	Behavioral Effects and Central Nervous System Levels of the Broadly Available κ-Agonist Hallucinogen Salvinorin A Are Affected by P-Glycoprotein Modulation In Vivo. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 802-808.	2.5	19
87	Neoclerodanes as Atypical Opioid Receptor Ligands. Journal of Medicinal Chemistry, 2013, 56, 3435-3443.	6.4	19
88	Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors. Brain Research Bulletin, 2008, 77, 49-54.	3.0	18
89	Semisynthesis and Kappa-Opioid Receptor Activity of Derivatives of Columbin, a Furanolactone Diterpene. Journal of Natural Products, 2017, 80, 2094-2100.	3.0	18
90	Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells. PLoS ONE, 2009, 4, e4250.	2.5	18

#	Article	IF	CITATIONS
91	Benzylimidazolines as h5-HT1B/1D Serotonin Receptor Ligands: A Structureâ^'Affinity Investigation. Journal of Medicinal Chemistry, 1998, 41, 2243-2251.	6.4	17
92	Piperidine Analogues of 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR) Tj ETQq0 (4371-4374.	0 0 rgBT /0 6.4	verlock 10 Tf . 17
93	Synthesis and dopamine transporter affinity of chiral 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(2-hydroxypropyl)piperazines as potential cocaine abuse therapeutic agents. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 553-556.	2.2	17
94	Structureâ^'Activity Relationship Studies of Highly Selective Inhibitors of the Dopamine Transporter: N-Benzylpiperidine Analogues of 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine. Journal of Medicinal Chemistry, 2003, 46, 1465-1469.	6.4	17
95	Design and Synthesis of Promiscuous High-Affinity Monoamine Transporter Ligands:Â Unraveling Transporter Selectivity. Journal of Medicinal Chemistry, 2006, 49, 1766-1772.	6.4	17
96	DAT/SERT selectivity of flexible GBR 12909 analogs modeled using 3D-QSAR methods. Bioorganic and Medicinal Chemistry, 2007, 15, 1146-1159.	3.0	16
97	The 2-methoxy methyl analogue of salvinorin A attenuates cocaine-induced drug seeking and sucrose reinforcements in rats. European Journal of Pharmacology, 2013, 720, 69-76.	3.5	16
98	Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clinical and Translational Immunology, 2021, 10, e1234.	3.8	16
99	Modafinil alone and in combination with low dose amphetamine does not establish conditioned place preference in male sprague-dawley rats Experimental and Clinical Psychopharmacology, 2013, 21, 252-258.	1.8	15
100	Modafinil and its metabolites enhance the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock-induced seizure model. Psychopharmacology, 2015, 232, 2463-2479.	3.1	15
101	Structure–activity relationships of substituted N-benzyl piperidines in the GBR series: Synthesis of 4-(2-(bis(4-fluorophenyl)methoxy)ethyl)-1-(2-trifluoromethylbenzyl)piperidine, an allosteric modulator of the serotonin transporter. Bioorganic and Medicinal Chemistry, 2006, 14, 3967-3973.	3.0	14
102	The Effects of Herkinorin, the First μ-Selective Ligand from a Salvinorin A-Derived Scaffold, in a Neuroendocrine Biomarker Assay in Nonhuman Primates. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 154-160.	2.5	14
103	(<i>S</i>)- <i>N</i> -(2,5-Dimethylphenyl)-1-(quinoline-8-ylsulfonyl)pyrrolidine-2-carboxamide as a Small Molecule Inhibitor Probe for the Study of Respiratory Syncytial Virus Infection. Journal of Medicinal Chemistry, 2012, 55, 8582-8587.	6.4	14
104	Holo Structure and Steady State Kinetics of the Thiazolinyl Imine Reductases for Siderophore Biosynthesis. Biochemistry, 2016, 55, 5423-5433.	2.5	14
105	Enantioselective synthesis of (2R,3R)- and (2S,3S)-2-[(3-chlorophenyl)-(2-methoxyphenoxy)methyl]morpholine. Tetrahedron: Asymmetry, 2005, 16, 2249-2256.	1.8	13
106	Synthesis of Neoclerodane Diterpenes and Their Pharmacological Effects. Topics in Current Chemistry, 2010, 299, 141-185.	4.0	13
107	Identification of unprecedented purine-containing compounds, the zingerines, from ginger rhizomes (Zingiber officinale Roscoe) using a phase-trafficking approach. Phytochemistry, 2011, 72, 935-941.	2.9	13
108	Reinforcing effects of synthetic cathinones in rhesus monkeys: Dose-response and behavioral economic analyses. Pharmacology Biochemistry and Behavior, 2021, 202, 173112.	2.9	13

#	Article	IF	CITATIONS
109	Development of Neurochemical Normalization ("Agonist Substitution") Therapeutics for Stimulant Abuse: Focus on the Dopamine Uptake Inhibitor, GBR12909. Current Medicinal Chemistry - Central Nervous System Agents, 2004, 4, 47-59.	0.5	12
110	New therapeutic potential for psychoactive natural products. Natural Product Reports, 2010, 27, 23-31.	10.3	12
111	Palladium-Catalyzed Transformations of Salvinorin A, a Neoclerodane Diterpene from <i>Salvia divinorum</i> . Organic Letters, 2013, 15, 5936-5939.	4.6	12
112	Time course of pharmacokinetic and hormonal effects of inhaled high-dose salvinorin A in humans. Journal of Psychopharmacology, 2016, 30, 323-329.	4.0	12
113	Modular Approach to <i>pseudo</i> -Neoclerodanes as Designer κ-Opioid Ligands. Organic Letters, 2017, 19, 5414-5417.	4.6	12
114	Effects of mesyl salvinorin B alone and in combination with naltrexone on alcohol deprivation effect in male and female mice. Neuroscience Letters, 2018, 673, 19-23.	2.1	12
115	Discovery of Small-Molecule Inhibitors Targeting the E3 Ubiquitin Ligase Activity of the Herpes Simplex Virus 1 ICPO Protein Using an <i>In Vitro</i> High-Throughput Screening Assay. Journal of Virology, 2019, 93, .	3.4	12
116	Further exploration of 1-{2-[Bis-(4-fluorophenyl)methoxy]ethyl}piperazine (GBR 12909): role of N-aromatic, N-heteroaromatic, and 3-oxygenated N-phenylpropyl substituents on affinity for the dopamine and serotonin transporter. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1385-1389.	2.2	11
117	Stuffed Methyltransferase Catalyzes the Penultimate Step of Pyochelin Biosynthesis. Biochemistry, 2019, 58, 665-678.	2.5	10
118	The Intriguing Effects of Substituents in the N-Phenethyl Moiety of Norhydromorphone: A Bifunctional Opioid from a Set of "Tail Wags Dog―Experiments. Molecules, 2020, 25, 2640.	3.8	10
119	G-Protein biased opioid agonists: 3-hydroxy- <i>N</i> -phenethyl-5-phenylmorphans with three-carbon chain substituents at C9. RSC Medicinal Chemistry, 2020, 11, 896-904.	3.9	10
120	The kappa-opioid receptor agonist, triazole 1.1, reduces oxycodone self-administration and enhances oxycodone-induced thermal antinociception in male rats. Psychopharmacology, 2021, 238, 3463-3476.	3.1	10
121	The kappa-opioid receptor agonist, nalfurafine, blocks acquisition of oxycodone self-administration and oxycodone's conditioned rewarding effects in male rats. Behavioural Pharmacology, 2020, 31, 792-797.	1.7	10
122	Synthetic studies on neoclerodane diterpenes from Salvia splendens: oxidative modifications of ring A. Tetrahedron, 2009, 65, 1708-1715.	1.9	9
123	Studies toward the Development of Antiproliferative Neoclerodanes from Salvinorin A. Journal of Natural Products, 2014, 77, 1817-1824.	3.0	9
124	Scalable Regioselective and Stereoselective Synthesis of Functionalized (<i>E</i>)-4-Iodobut-3-en-1-ols: Gram-Scale Total Synthesis of Fungal Decanolides and Derivatives. Journal of Organic Chemistry, 2018, 83, 980-992.	3.2	9
125	The Salvinorin Analogue, Ethoxymethyl Ether Salvinorin B, Promotes Remyelination in Preclinical Models of Multiple Sclerosis. Frontiers in Neurology, 2021, 12, 782190.	2.4	9
126	A concise synthesis of (S)-(+)-1-(4-{2-[bis-(4-fluorophenyl)methoxy]-ethyl}piperazin-1-yl)-2-phenylpropan-2-ol dimaleate. Tetrahedron: Asymmetry, 2003, 14, 3285-3289.	1.8	8

#	Article	IF	CITATIONS
127	Combined effects of modafinil and d-amphetamine in male Sprague–Dawley rats trained to discriminate d-amphetamine. Pharmacology Biochemistry and Behavior, 2013, 110, 208-215.	2.9	8
128	Expanding the results of a high throughput screen against an isochorismate-pyruvate lyase to enzymes of a similar scaffold or mechanism. Bioorganic and Medicinal Chemistry, 2014, 22, 5961-5969.	3.0	8
129	Design, synthesis, and preliminary evaluation of a potential synthetic opioid rescue agent. Journal of Biomedical Science, 2021, 28, 62.	7.0	8
130	Potency enhancement of the κ-opioid receptor antagonist probe ML140 through sulfonamide constraint utilizing a tetrahydroisoquinoline motif. Bioorganic and Medicinal Chemistry, 2015, 23, 3948-3956.	3.0	7
131	The G-protein biased kappa opioid agonists, triazole 1.1 and nalfurafine, produce non-uniform behavioral effects in male rhesus monkeys. Pharmacology Biochemistry and Behavior, 2022, 217, 173394.	2.9	7
132	Assessment of rimonabant-like adverse effects of purported CB1R neutral antagonist / CB2R agonist aminoalkylindole derivatives in mice. Drug and Alcohol Dependence, 2018, 192, 285-293.	3.2	6
133	2-(Anilino)imidazolines and 2-(benzyl)imidazoline derivatives as h5-HT1D serotonin receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4697-4699.	2.2	5
134	Permeation and metabolism of cocaine in the nasal mucosa. European Journal of Drug Metabolism and Pharmacokinetics, 2012, 37, 255-262.	1.6	5
135	LC-MS/MS quantification of salvinorin A from biological fluids. Analytical Methods, 2013, 5, 7042.	2.7	5
136	Profile of a short-acting κ-antagonist, LY2795050, on self-grooming behaviors, forced swim test and locomotor activity: sex comparison in mice. Journal of Psychopharmacology, 2021, 35, 579-590.	4.0	5
137	Rational inhibitor design for Pseudomonas aeruginosa salicylate adenylation enzyme PchD. Journal of Biological Inorganic Chemistry, 2022, 27, 541-551.	2.6	5
138	A concise method for the preparation of deuterium-labeled cortisone: Synthesis of [6,7-H]cortisone. Steroids, 2005, 70, 763-769.	1.8	4
139	Further exploration of the structure-activity relationship of imidazoquinolines; identification of potent C7-substituted imidazoquinolines. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126788.	2.2	4
140	Sex Differences in Kappa Opioid Receptor Agonist Mediated Attenuation of Chemotherapy-Induced Neuropathic Pain in Mice. Frontiers in Pharmacology, 2022, 13, 813562.	3.5	4
141	Utilizing nature as a source of new probes for opioid pharmacology. Future Medicinal Chemistry, 2009, 1, 285-301.	2.3	3
142	N-Acetyl-S-(N,N-diethylcarbamoyl) cysteine in rat nucleus accumbens, medial prefrontal cortex, and in rat and human plasma after disulfiram administration. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107, 518-525.	2.8	3
143	Discriminative-Stimulus Effects of Synthetic Cathinones in Squirrel Monkeys. International Journal of Neuropsychopharmacology, 2021, 24, 656-665.	2.1	3
144	Predicted mode of Binding of Non-Nitrogenous μ-Opioid Receptor Ligands by Metadynamics. Biophysical Journal, 2016, 110, 90a.	0.5	2

THOMAS E PRISINZANO

#	Article	IF	CITATIONS
145	Development of biased agonists at the kappa opioid receptor FASEB Journal, 2013, 27, .	0.5	2
146	Structure-activity studies of PTPRD phosphatase inhibitors identify a 7-cyclopentymethoxy illudalic acid analog candidate for development. Biochemical Pharmacology, 2022, 195, 114868.	4.4	2
147	The Importance of Molecular Design Principles in Delivering High Quality Pharmaceutical Candidates. AAPS Advances in the Pharmaceutical Sciences Series, 2015, , 177-191.	0.6	1
148	Rapid-Onset Anti-Stress Effects of a Kappa-Opioid Receptor Antagonist, LY2795050, Against Immobility in an Open Space Swim Paradigm in Male and Female Mice. Frontiers in Pharmacology, 2021, 12, 775317.	3.5	1
149	Synthesis and Dopamine Transporter Affinity of Chiral 1-[2-[Bis(4-fluorophenyl)methoxy]ethyl]-4-(2-hydroxypropyl)piperazines as Potential Cocaine Abuse Therapeutic Agents ChemInform, 2003, 34, no.	0.0	0
150	Special Issue in Honor of Lester A. Mitscher. Journal of Natural Products, 2013, 76, 303-304.	3.0	0
151	Mu opioid receptor activation without arrestinâ€interactions; a pharmacological approach FASEB Journal, 2007, 21, A426.	0.5	0
152	Development of functionally selective agonists at the kappa opioid receptor (KOR). FASEB Journal, 2013, 27, lb551.	0.5	0
153	Abuseâ€Related Discriminative Stimulus Effects of Synthetic Cathinones. FASEB Journal, 2018, 32, 822.1.	0.5	0
154	Pharmacological Characterization of Kappa Opioid Receptor Agonists. FASEB Journal, 2019, 33, 663.14.	0.5	0
155	NeuroChat with Professor Thomas E. Prisinzaro. ACS Chemical Neuroscience, 2020, 11, 3993-3994.	3.5	0