Shiv D Kale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703617/publications.pdf Version: 2024-02-01

SHIV D ΚΛΙ Ε

#	Article	IF	CITATIONS
1	Crowdsourced analysis of fungal growth and branching on microfluidic platforms. PLoS ONE, 2021, 16, e0257823.	2.5	9
2	Nlrx1-Regulated Defense and Metabolic Responses to Aspergillus fumigatus Are Morphotype and Cell Type Specific. Frontiers in Immunology, 2021, 12, 749504.	4.8	2
3	NLRX1 is a key regulator of immune signaling during invasive pulmonary aspergillosis. PLoS Pathogens, 2020, 16, e1008854.	4.7	16
4	PenSeq: coverage you can count on. New Phytologist, 2019, 221, 1177-1179.	7.3	1
5	Endocytic Markers Associated with the Internalization and Processing of <i>Aspergillus fumigatus</i> Conidia by BEAS-2B Cells. MSphere, 2019, 4, .	2.9	21
6	Comparative genome analyses reveal sequence features reflecting distinct modes of host-adaptation between dicot and monocot powdery mildew. BMC Genomics, 2018, 19, 705.	2.8	39
7	The masks of Avh238. New Phytologist, 2017, 214, 8-10.	7.3	0
8	Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis. Scientific Reports, 2017, 7, 17096.	3.3	33
9	Lanthionine Synthetase C-Like 2 Modulates Immune Responses to Influenza Virus Infection. Frontiers in Immunology, 2017, 8, 178.	4.8	13
10	Modeling-Enabled Characterization of Novel NLRX1 Ligands. PLoS ONE, 2015, 10, e0145420.	2.5	25
11	Characterizing and Measuring Endocytosis of Lipid-Binding Effectors in Mammalian Cells. Methods in Enzymology, 2014, 535, 103-119.	1.0	2
12	Structural Basis for Interactions of the <i>Phytophthora sojae</i> RxLR Effector Avh5 with Phosphatidylinositol 3-Phosphate and for Host Cell Entry. Molecular Plant-Microbe Interactions, 2013, 26, 330-344.	2.6	81
13	Oomycete and fungal effector entry, a microbial Trojan horse. New Phytologist, 2012, 193, 874-881.	7.3	29
14	Entry of oomycete and fungal effectors into plant and animal host cells. Cellular Microbiology, 2011, 13, 1839-1848.	2.1	115
15	A Secreted Effector Protein of Laccaria bicolor Is Required for Symbiosis Development. Current Biology, 2011, 21, 1197-1203.	3.9	447
16	Transcriptional Programming and Functional Interactions within the <i>Phytophthora sojae</i> RXLR Effector Repertoire Â. Plant Cell, 2011, 23, 2064-2086.	6.6	455
17	Rust Secreted Protein Ps87 Is Conserved in Diverse Fungal Pathogens and Contains a RXLR-like Motif Sufficient for Translocation into Plant Cells. PLoS ONE, 2011, 6, e27217.	2.5	140
18	External Lipid PI3P Mediates Entry of Eukaryotic Pathogen Effectors into Plant and Animal Host Cells. Cell, 2010, 142, 284-295.	28.9	463

#	Article	IF	CITATIONS
19	RXLR-Mediated Entry of <i>Phytophthora sojae</i> Effector <i>Avr1b</i> into Soybean Cells Does Not Require Pathogen-Encoded Machinery. Plant Cell, 2008, 20, 1930-1947.	6.6	440
20	Conserved C-Terminal Motifs Required for Avirulence and Suppression of Cell Death by <i>Phytophthora sojae effector</i> Avr1b. Plant Cell, 2008, 20, 1118-1133.	6.6	323