List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703482/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A solar-powered multifunctional and multimode electrochromic smart window based on WO3/Prussian blue complementary structure. Sustainable Materials and Technologies, 2022, 31, e00372.	3.3	14
2	Composite polymer electrolytes reinforced by a three-dimensional polyacrylonitrile/Li0.33La0.557TiO3 nanofiber framework for room-temperature dendrite-free all-solid-state lithium metal battery. Rare Metals, 2022, 41, 1870-1879.	7.1	48
3	Hydrogen bonding enhanced SiO ₂ /PEO composite electrolytes for solid-state lithium batteries. Journal of Materials Chemistry A, 2022, 10, 3400-3408.	10.3	54
4	Glass fiber reinforced graphite/carbon black@PES composite films for high-temperature electric heaters. Journal of Industrial and Engineering Chemistry, 2022, 107, 401-409.	5.8	5
5	Polybenzimidazole/Conductive Carbon Black Composite Driven at Low Voltage for High-Temperature Heaters. Journal of Electronic Materials, 2022, 51, 2652-2662.	2.2	5
6	Spinel LiNi0.5Mn1.5O4 shell enables Ni-rich layered oxide cathode with improved cycling stability and rate capability for high-energy lithium-ion batteries. Electrochimica Acta, 2022, 418, 140352.	5.2	17
7	The Effect of Compaction Density of Sulfur/Carbon Cathodes on the Practical Application of Li-S Pouch Cells. Journal of Electronic Materials, 2022, 51, 4115-4124.	2.2	2
8	Argyrodite Solid Electrolyte-Integrated Ni-Rich Oxide Cathode with Enhanced Interfacial Compatibility for All-Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 33361-33369.	8.0	13
9	Yttrium stabilized argyrodite solid electrolyte with enhanced ionic conductivity and interfacial stability for all-solid-state batteries. Journal of Power Sources, 2022, 543, 231846.	7.8	10
10	Interfacial Reactions in Inorganic Allâ€Solidâ€State Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	4.7	39
11	Empowering polypropylene separator with enhanced polysulfide adsorption and reutilization ability for high-performance Li-S batteries. Materials Research Bulletin, 2021, 134, 111108.	5.2	12
12	Graphene/TiO2 decorated N-doped carbon foam as 3D porous current collector for high loading sulfur cathode. Materials Research Bulletin, 2021, 135, 111129.	5.2	15
13	High-rate transition metal-based cathode materials for battery-supercapacitor hybrid devices. Nanoscale Advances, 2021, 3, 5222-5239.	4.6	18
14	High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. Frontiers in Energy Research, 2021, 8, .	2.3	15
15	Milling Time-Dependent Lithium/Sodium Storage Performance of Carbons Synthesized by a Mechanochemical Reaction. Energy & Fuels, 2021, 35, 4596-4603.	5.1	4
16	One-pot synthesis of nanocrystalline SnS@tremella-like porous carbon by supercritical CO2 method for excellent sodium storage performance. Electrochimica Acta, 2021, 373, 137933.	5.2	10
17	A Low-Cost and High-Efficiency Electrothermal Composite Film Composed of Hybrid Conductivity Fillers and Polymer Blends Matrix for High-Performance Plate Heater. Journal of Electronic Materials, 2021, 50, 3084-3094.	2.2	19
18	Unprecedented Selfâ€Healing Effect of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Battery. Small, 2021, 17, e2101326.	10.0	54

#	Article	IF	CITATIONS
19	Halide Electrolyte Li3InCl6-Based All-Solid-State Lithium Batteries With Slurry-Coated LiNi0.8Co0.1Mn0.1O2 Composite Cathode: Effect of Binders. Frontiers in Materials, 2021, 8, .	2.4	9
20	Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy, 2021, 87, 106081.	16.0	55
21	A high-performance electrochromic battery based on complementary Prussian white/Li4Ti5O12 thin film electrodes. Solar Energy Materials and Solar Cells, 2021, 231, 111314.	6.2	20
22	Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 2021, 12, 119.	12.8	93
23	<i>In Situ</i> Synthesis of a Si/CNTs/C Composite by Directly Reacting Magnesium Silicide with Lithium Carbonate for Enhanced Lithium Storage Capability. Energy & amp; Fuels, 2021, 35, 20386-20393.	5.1	7
24	Multifunctional Protection Layers via a Self-Driven Chemical Reaction To Stabilize Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 56682-56691.	8.0	10
25	Rose pollens as sustainable biotemplates for porous SiOC microellipsoids with enhanced lithium storage performance. Journal of Alloys and Compounds, 2020, 816, 152595.	5.5	14
26	2 D MXeneâ€based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 2020, 13, 1409-1419.	6.8	63
27	β-Cyclodextrin-modified porous ceramic membrane with enhanced ionic conductivity and thermal stability for lithium-ion batteries. Ionics, 2020, 26, 173-182.	2.4	12
28	Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. Journal of Power Sources, 2020, 448, 227440.	7.8	75
29	A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage. Electrochimica Acta, 2020, 330, 135248.	5.2	17
30	Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903311.	19.5	141
31	Puffed Rice Carbon with Coupled Sulfur and Metal Iron for High-Efficiency Mercury Removal in Aqueous Solution. Environmental Science & Technology, 2020, 54, 2539-2547.	10.0	46
32	Tuning the Band Structure of MoS ₂ <i>via</i> Co ₉ S ₈ @MoS ₂ Core–Shell Structure to Boost Catalytic Activity for Lithium–Sulfur Batteries. ACS Nano, 2020, 14, 17285-17294.	14.6	161
33	Silicon-Doped Argyrodite Solid Electrolyte Li ₆ PS ₅ I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41538-41545.	8.0	90
34	In-situ electrolytic synthesis and superior lithium storage capability of Ni–NiO/C nanocomposite by sacrificial nickel anode in molten carbonates. Journal of Alloys and Compounds, 2020, 834, 155111.	5.5	11
35	A Solar-Driven Flexible Electrochromic Supercapacitor. Materials, 2020, 13, 1206.	2.9	34
36	Hydrogen Pressure-Dependent Dehydrogenation Performance of the Mg(NH ₂) ₂ –2LiH–0.07KOH System. ACS Applied Materials & Interfaces, 2020, 12, 15255-15261.	8.0	10

#	Article	IF	CITATIONS
37	Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction. Ionics, 2020, 26, 5065-5073.	2.4	4
38	Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. Journal of Chemistry, 2020, 2020, 1-17.	1.9	9
39	Integrated photo-chargeable electrochromic energy-storage devices. Electrochimica Acta, 2020, 345, 136235.	5.2	27
40	Tremella-like porous carbon derived from one-step electroreduction of molten carbonates with superior rate capability for sodium-ion batteries. Ionics, 2020, 26, 2899-2907.	2.4	4
41	Mechanochemical synthesis of carbon from CO2: Mechanism for milling process-dependent morphology of carbon. Journal of Alloys and Compounds, 2020, 830, 154681.	5.5	9
42	Embedding submicron SiO2 into porous carbon as advanced lithium‒ion batteries anode with ultralong cycle life and excellent rate capability. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227-233.	5.3	12
43	Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 519-527.	2.5	28
44	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	14.9	213
45	Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 1380-1387.	2.8	16
46	Ultraefficient Conversion of CO ₂ into Morphology ontrolled Nanocarbons: A Sustainable Strategy toward Greenhouse Gas Utilization. Small, 2019, 15, e1902249.	10.0	21
47	Importing Tin Nanoparticles into Biomassâ€Derived Silicon Oxycarbides with Highâ€Rate Cycling Capability Based on Supercritical Fluid Technology. Chemistry - A European Journal, 2019, 25, 7719-7725.	3.3	14
48	Empowering Metal Phosphides Anode with Catalytic Attribute toward Superior Cyclability for Lithiumâ€ion Storage. Advanced Functional Materials, 2019, 29, 1809051.	14.9	52
49	Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties. Chemical Engineering Journal, 2019, 359, 584-593.	12.7	43
50	Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters. Journal of Industrial and Engineering Chemistry, 2019, 71, 293-300.	5.8	33
51	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	4.7	88
52	Improved high rate capability of Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material by surface modification with Co3O4. Journal of Alloys and Compounds, 2019, 783, 349-356.	5.5	22
53	Enhanced Electrochemical Performance of Lithium–Sulfur Batteries with Surface Copolymerization of Cathode. Journal of the Electrochemical Society, 2019, 166, A5349-A5353.	2.9	13
54	A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology, 2019, 30, 144001.	2.6	9

#	Article	IF	CITATIONS
55	Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability. Journal of Power Sources, 2019, 412, 78-85.	7.8	141
56	Mg ₂ B ₂ O ₅ Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018, 18, 3104-3112.	9.1	245
57	Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Materials, 2018, 15, 218-225.	18.0	88
58	Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage. Green Chemistry, 2018, 20, 1484-1490.	9.0	32
59	Toast-like porous carbon derived from one-step reduction of CaCO3 for electrochemical lithium storage. Carbon, 2018, 130, 559-565.	10.3	23
60	Supercritical CO2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg2+ removal from water. New Journal of Chemistry, 2018, 42, 3541-3550.	2.8	13
61	Electrochemical lithium storage properties of desert sands. Ionics, 2018, 24, 2233-2239.	2.4	4
62	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ^2. Nano Energy, 2018, 45, 203-209.	16.0	153
63	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 2096-2100.	13.8	484
64	A 3D Nanostructured Hydrogelâ€Frameworkâ€Derived Highâ€Performance Composite Polymer Lithiumâ€Ion Electrolyte. Angewandte Chemie, 2018, 130, 2118-2122.	2.0	34
65	Enhancing Catalyzed Decomposition of Na ₂ CO ₃ with Co ₂ MnO _{<i>x</i>} Nanowire-Decorated Carbon Fibers for Advanced Na–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17240-17248.	8.0	49
66	A green and facile strategy for the low-temperature and rapid synthesis of Li ₂ S@PC–CNT cathodes with high Li ₂ S content for advanced Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 9906-9914.	10.3	45
67	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	10.3	186
68	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	10.4	36
69	Supercritical CO ₂ mediated incorporation of sulfur into carbon matrix as cathode materials towards high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 212-222.	10.3	49
70	Nanostructured Host Materials for Trapping Sulfur in Rechargeable Li–S Batteries: Structure Design and Interfacial Chemistry. Small Methods, 2018, 2, 1700279.	8.6	201
71	Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries. Journal of Power Sources, 2018, 378, 73-80.	7.8	87
72	Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 1-9.	18.0	208

#	Article	IF	CITATIONS
73	A new strategy for the construction of 3D TiO ₂ nanowires/reduced graphene oxide for high-performance lithium/sodium batteries. Journal of Materials Chemistry A, 2018, 6, 24256-24266.	10.3	43
74	Supercritical CO ₂ -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries. Journal of Materials Chemistry A, 2018, 6, 24773-24782.	10.3	26
75	Green and Low-Temperature Synthesis of Foam-like Hierarchical Porous Carbon from CO ₂ as Superior Lithium Storage Material. ACS Applied Energy Materials, 2018, 1, 7123-7129.	5.1	17
76	Supercritical CO ₂ -Fluid-Assisted Synthesis of TiO ₂ Quantum Dots/Reduced Graphene Oxide Composites for Outstanding Sodium Storage Capability. ACS Applied Energy Materials, 2018, 1, 7213-7219.	5.1	17
77	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. Journal of Power Sources, 2018, 391, 73-79.	7.8	168
78	Effects of Nd-modification on the activity and SO ₂ resistance of MnO _x /TiO ₂ catalysts for low-temperature NH ₃ -SCR. New Journal of Chemistry, 2018, 42, 12845-12852.	2.8	19
79	Rational design of TiO2@ nitrogen-doped carbon coaxial nanotubes as anode for advanced lithium ion batteries. Applied Surface Science, 2018, 458, 1018-1025.	6.1	22
80	The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Applied Surface Science, 2018, 459, 639-646.	6.1	72
81	Facile assembly of a S@carbon nanotubes/polyaniline/graphene composite for lithium–sulfur batteries. RSC Advances, 2017, 7, 9819-9825.	3.6	62
82	In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy, 2017, 33, 45-54.	16.0	205
83	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	10.3	37
84	Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries. Journal of Alloys and Compounds, 2017, 706, 227-233.	5.5	20
85	Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries. Nano Letters, 2017, 17, 1906-1914.	9.1	131
86	A Conductive Molecular Framework Derived Li ₂ S/N,P odoped Carbon Cathode for Advanced Lithium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602876.	19.5	258
87	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	16.0	431
88	Hybrid nanoarchitecture of TiO 2 nanotubes and graphene sheet for advanced lithium ion batteries. Materials Research Bulletin, 2017, 96, 425-430.	5.2	19
89	Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12934-12942. 	10.3	126
90	Submicron silica as highâ~'capacity lithium storage material with superior cycling performance. Materials Research Bulletin, 2017, 96, 347-353.	5.2	19

#	Article	IF	CITATIONS
91	Solid-State Lithium–Sulfur Batteries Operated at 37 °C with Composites of Nanostructured Li ₇ La ₃ Zr ₂ O ₁₂ /Carbon Foam and Polymer. Nano Letters, 2017, 17, 2967-2972.	9.1	384
92	Synthesis and electrochemical properties of LiMnPO4-modified Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material for Li-ion batteries. Electrochimica Acta, 2017, 235, 1-9.	5.2	19
93	N991/MWCNTs/PEO composite films with nano SiO 2 particles as filler for advanced flexible electric heating elements. Materials Research Bulletin, 2017, 90, 273-279.	5.2	21
94	A Tunable 3D Nanostructured Conductive Gel Framework Electrode for Highâ€Performance Lithium Ion Batteries. Advanced Materials, 2017, 29, 1603922.	21.0	175
95	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	14.6	700
96	Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chemical Engineering Journal, 2017, 330, 1195-1202.	12.7	119
97	Synthesis and electrochemical performance of nano TiO ₂ (B)-coated Li[Li _{0.2} Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ cathode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12962-12968.	2.8	21
98	H ₂ O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life. Journal of Materials Chemistry A, 2017, 5, 18221-18229.	10.3	30
99	Unexpected catalytic performance of Fe–M–C (M = N, P, and S) electrocatalysts towards oxygen reduction reaction: surface heteroatoms boost the activity of Fe ₂ M/graphene nanocomposites. Dalton Transactions, 2017, 46, 16885-16894.	3.3	12
100	Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23782-23791.	8.0	148
101	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	17.4	252
102	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632-640.	10.3	151
103	The Effects of Surfactants on Al ₂ O ₃ -Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1189-1196.	4.9	1
104	One-pot Biotemplate Synthesis of FeS 2 Decorated Sulfur-doped Carbon Fiber as High Capacity Anode for Lithium-ion Batteries. Electrochimica Acta, 2016, 209, 201-209.	5.2	63
105	Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries. RSC Advances, 2016, 6, 69764-69772.	3.6	35
106	Crystallization and Rheology of Poly(ethylene oxide) in Imidazolium Ionic Liquids. Macromolecules, 2016, 49, 6106-6115.	4.8	37
107	Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 688, 729-735.	5.5	106
108	Highly improved electrochemical performance of Li-S batteries with heavily nitrogen-doped three-dimensional porous graphene interlayers. Materials Research Bulletin, 2016, 84, 218-224.	5.2	32

#	Article	IF	CITATIONS
109	In Situ Reactive Synthesis of Polypyrrole-MnO ₂ Coaxial Nanotubes as Sulfur Hosts for High-Performance Lithium–Sulfur Battery. Nano Letters, 2016, 16, 7276-7281.	9.1	271
110	Energy gels: A bio-inspired material platform for advanced energy applications. Nano Today, 2016, 11, 738-762.	11.9	144
111	Sn ⁴⁺ Ion Decorated Highly Conductive Ti ₃ C ₂ MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. ACS Nano, 2016, 10, 2491-2499.	14.6	632
112	Growth of hierarchal porous CoO nanowire arrays on carbon cloth as binder-free anodes for high-performance flexible lithium-ion batteries. Journal of Alloys and Compounds, 2016, 655, 372-377.	5.5	38
113	Microwave-assisted synthesis of Co3O4–graphene sheet-on-sheet nanocomposites and electrochemical performances for lithium ion batteries. Materials Research Bulletin, 2015, 72, 43-49.	5.2	30
114	Facile synthesis of Fe3O4@C quantum dots/graphene nanocomposite with enhanced lithium-storage performance. Materials Letters, 2015, 142, 287-290.	2.6	21
115	One-pot solvothermal synthesis of ZnFe2O4 nanospheres/graphene composites with improved lithium-storage performance. Materials Research Bulletin, 2015, 65, 204-209.	5.2	37
116	Microporous carbon nanosheets derived from corncobs for lithium–sulfur batteries. Electrochimica Acta, 2015, 176, 853-860.	5.2	162
117	Ultrafine SnO2 nanocrystals anchored graphene composites as anode material for lithium-ion batteries. Materials Research Bulletin, 2015, 68, 120-125.	5.2	35
118	Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. Journal of Power Sources, 2015, 286, 431-437.	7.8	141
119	Preparation of carbon-coated MnFe2O4 nanospheres as high-performance anode materials for lithium-ion batteries. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	22
120	In Situ Transmission Electron Microscopy Observation of the Lithiation–Delithiation Conversion Behavior of CuO/Graphene Anode. ACS Applied Materials & Interfaces, 2015, 7, 23062-23068.	8.0	27
121	Fe3O4 nanoparticles-wrapped carbon nanofibers as high-performance anode for lithium-ion battery. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	2
122	ZnCo2O4 nanoparticles/N-doped three-dimensional graphene composite with enhanced lithium-storage performance. Materials Letters, 2015, 161, 297-300.	2.6	9
123	Ultrasound-assisted synthesis of porous Co3O4 microrods and their lithium-storage properties. Applied Physics A: Materials Science and Processing, 2015, 118, 1171-1176.	2.3	5
124	Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 275, 22-25.	7.8	155
125	Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries. Applied Surface Science, 2015, 324, 399-404.	6.1	53
126	Microwave-assisted synthesis of hollow CuO–Cu2O nanosphere/graphene composite as anode for lithium-ion battery. Journal of Alloys and Compounds, 2014, 615, 390-394.	5.5	65

#	Article	IF	CITATIONS
127	ZnO Nanocrystals Anchored Graphene: <l>In Situ</l> Solvothermal Synthesis and Enhanced Photocatalytic Performance. Journal of Nanoscience and Nanotechnology, 2014, 14, 4264-4268.	0.9	2
128	Hierarchical ZnO hollow microspheres with strong violet emission and enhanced photoelectrochemical response. Materials Letters, 2014, 132, 421-424.	2.6	7
129	Sonochemical synthesis of CuS/reduced graphene oxide nanocomposites with enhanced absorption and photocatalytic performance. Materials Letters, 2014, 126, 220-223.	2.6	55
130	Biomass derived activated carbon with 3D connected architecture for rechargeable lithiumâ^'sulfur batteries. Electrochimica Acta, 2014, 116, 146-151.	5.2	258
131	The direct growth of a WO ₃ nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications. CrystEngComm, 2014, 16, 6866-6872.	2.6	67
132	Graphite oxide-assisted sonochemical preparation of α-Bi2O3 nanosheets and their high-efficiency visible light photocatalytic activity. Journal of Materials Science, 2014, 49, 218-224.	3.7	15
133	Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Solar Energy Materials and Solar Cells, 2014, 122, 51-58.	6.2	121
134	Revealing the electrochemical conversion mechanism of porous Co3O4 nanoplates in lithium ion battery by in situ transmission electron microscopy. Nano Energy, 2014, 9, 264-272.	16.0	119
135	<i>In Situ</i> Transmission Electron Microscopy Observation of Electrochemical Sodiation of Individual Co ₉ S ₈ -Filled Carbon Nanotubes. ACS Nano, 2014, 8, 3620-3627.	14.6	76
136	Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries. Journal of Power Sources, 2014, 270, 1-8.	7.8	106
137	Microwave irradiation synthesis of Co3O4 quantum dots/graphene composite as anode materials for Li-ion battery. Electrochimica Acta, 2014, 143, 175-179.	5.2	76
138	Enhanced electrochemical performance by wrapping graphene on carbon nanotube/sulfur composites for rechargeable lithium–sulfur batteries. Materials Letters, 2014, 137, 277-280.	2.6	44
139	Nanoleaf-on-sheet CuO/graphene composites: Microwave-assisted assemble and excellent electrochemical performances for lithium ion batteries. Electrochimica Acta, 2014, 125, 615-621.	5.2	67
140	Nanosulfur/polyaniline/graphene composites for high-performance lithium–sulfur batteries: One pot in-situ synthesis. Materials Letters, 2014, 133, 193-196.	2.6	60
141	In Situ Transmission Electron Microscopy Observation of Electrochemical Behavior of CoS ₂ in Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 3016-3022.	8.0	129
142	In Situ TEM Observation of the Electrochemical Process of Individual CeO ₂ /Graphene Anode for Lithium Ion Battery. Journal of Physical Chemistry C, 2013, 117, 4292-4298.	3.1	89
143	Preparation of porous Co3O4 polyhedral architectures and its application as anode material in lithium-ion battery. Materials Letters, 2013, 97, 129-132.	2.6	40
144	Synthesis of Porous NiO-Wrapped Graphene Nanosheets and Their Improved Lithium Storage Properties. Journal of Physical Chemistry C, 2013, 117, 24121-24128.	3.1	70

#	Article	IF	CITATIONS
145	Pt supported self-assembled nest-like-porous WO3 hierarchical microspheres as electrocatalyst for methanol oxidation. Electrochimica Acta, 2013, 88, 107-111.	5.2	36
146	<i>In Situ</i> Transmission Electron Microscopy Observation of the Conversion Mechanism of Fe ₂ O ₃ /Graphene Anode during Lithiation–Delithiation Processes. ACS Nano, 2013, 7, 9115-9121.	14.6	221
147	Porous CoO/C polyhedra as anode material for Li-ion batteries. Electrochimica Acta, 2013, 108, 506-511.	5.2	51
148	One-pot synthesis of Fe2O3/graphene and its lithium-storage performance. Electrochimica Acta, 2013, 113, 212-217.	5.2	38
149	<i>In Situ</i> Transmission Electron Microscopy Investigation of the Electrochemical Lithiation–Delithiation of Individual Co ₉ S ₈ /Co-Filled Carbon Nanotubes. ACS Nano, 2013, 7, 11379-11387.	14.6	70
150	l-cysteine-assisted preparation of porous NiO hollow microspheres with enhanced performance for lithium storage. CrystEngComm, 2013, 15, 8314.	2.6	40
151	Sulfur@hollow polypyrrole sphere nanocomposites for rechargeable Li–S batteries. RSC Advances, 2013, 3, 24914.	3.6	64
152	Graphite oxide-mediated synthesis of porous CeO2 quadrangular prisms and their high-efficiency adsorptive performance. Materials Research Bulletin, 2013, 48, 4362-4367.	5.2	5
153	Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries. Materials Letters, 2013, 106, 178-181.	2.6	40
154	Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochimica Acta, 2013, 92, 87-92.	5.2	101
155	Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochimica Acta, 2013, 99, 1-8.	5.2	72
156	Visualizing the electrochemical reaction of ZnO nanoparticles with lithium by <i>in situ</i> TEM: two reaction modes are revealed. Nanotechnology, 2013, 24, 255705.	2.6	65
157	Ultra-thin WO3 nanorod embedded polyaniline composite thin film: Synthesis and electrochromic characteristics. Solar Energy Materials and Solar Cells, 2013, 114, 31-37.	6.2	77
158	Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries. Journal of Alloys and Compounds, 2012, 536, 132-137.	5.5	37
159	An efficient route to a porous NiO/reduced graphene oxide hybrid film with highly improved electrochromic properties. Nanoscale, 2012, 4, 5724.	5.6	154
160	Hierarchical Three-Dimensional ZnCo ₂ O ₄ Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries. Nano Letters, 2012, 12, 3005-3011.	9.1	967
161	Controllable Synthesis of a Monophase Nickel Phosphide/Carbon (Ni ₅ P ₄ /C) Composite Electrode via Wetâ€Chemistry and a Solidâ€State Reaction for the Anode in Lithium Secondary Batteries. Advanced Functional Materials, 2012, 22, 3927-3935.	14.9	125
162	Carbonâ€Decorated Singleâ€Crystalline Ni ₂ P Nanotubes Derived from Ni Nanowire Templates: A Highâ€Performance Material for Liâ€Ion Batteries. Chemistry - A European Journal, 2012, 18, 6031-6038.	3.3	59

#	Article	IF	CITATIONS
163	Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2012, 198, 287-293.	7.8	46
164	Self-Assembled Synthesis of Hierarchical Waferlike Porous Li–V–O Composites as Cathode Materials for Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 25508-25518.	3.1	60
165	Improved Electrochemical Performance of Self-Assembled Hierarchical Nanostructured Nickel Phosphide as a Negative Electrode for Lithium Ion Batteries. Journal of Physical Chemistry C, 2011, 115, 23760-23767.	3.1	74
166	Self-assembled sandwich-like NiO film and its application for Li-ion batteries. Journal of Alloys and Compounds, 2011, 509, 3889-3893.	5.5	61
167	Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance. Journal of Materials Chemistry, 2011, 21, 5492.	6.7	264
168	Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis. Journal of Materials Chemistry, 2011, 21, 17316.	6.7	141
169	Microstructure and infrared reflectance modulation properties in DC-sputtered tungsten oxide films. Journal of Solid State Electrochemistry, 2011, 15, 2213-2219.	2.5	33
170	Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 2011, 95, 2107-2112.	6.2	141
171	A General Approach to Fabricate Diverse Nobleâ€Metal (Au, Pt, Ag, Pt/Au)/Fe ₂ O ₃ Hybrid Nanomaterials. Chemistry - A European Journal, 2010, 16, 8108-8116.	3.3	105
172	A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity. Journal of Colloid and Interface Science, 2010, 352, 573-579.	9.4	55
173	Enhanced electrochromic performance of macroporous WO3 films formed by anodic oxidation of DC-sputtered tungsten layers. Electrochimica Acta, 2010, 55, 6953-6958.	5.2	96
174	Fast electrochromic properties of self-supported Co3O4 nanowire array film. Solar Energy Materials and Solar Cells, 2010, 94, 386-389.	6.2	66
175	Incorporation of MWCNTs into leaf-like CuO nanoplates for superior reversible Li-ion storage. Electrochemistry Communications, 2010, 12, 1103-1107.	4.7	95
176	Improved electrochromic performance of hierarchically porous Co3O4 array film through self-assembled colloidal crystal template. Electrochimica Acta, 2010, 55, 989-994.	5.2	41
177	Cobalt Oxide Ordered Bowl-Like Array Films Prepared by Electrodeposition through Monolayer Polystyrene Sphere Template and Electrochromic Properties. ACS Applied Materials & Interfaces, 2010, 2, 186-192.	8.0	118
178	An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 2009, 93, 1840-1845.	6.2	170
179	Multicolor and fast electrochromism of nanoporous NiO/poly(3,4-ethylenedioxythiophene) composite thin film. Electrochemistry Communications, 2009, 11, 702-705.	4.7	68
180	Ag-modification improving the electrochemical performance of ZnO anode for Ni/Zn secondary batteries. Journal of Alloys and Compounds, 2009, 479, 624-628.	5.5	60

#	Article	IF	CITATIONS
181	Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 2008, 53, 5721-5724.	5.2	153
182	Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 2008, 92, 628-633.	6.2	386
183	Enhanced electrochromics of nanoporous cobalt oxide thin film prepared by a facile chemical bath deposition. Electrochemistry Communications, 2008, 10, 1815-1818.	4.7	79
184	A highly porous NiO/polyaniline composite film prepared by combining chemical bath deposition and electro-polymerization and its electrochromic performance. Nanotechnology, 2008, 19, 465701.	2.6	73
185	Preparation of Cr-doped Ba4In2O7/In2O3 nanocomposite and its photo-assisted chargeability in hydrogen storage alloy/photocatalyst electrode. Journal of Alloys and Compounds, 2008, 462, 220-224.	5.5	16