John Hanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703206/publications.pdf

Version: 2024-02-01

117625 149698 3,897 122 34 56 h-index citations g-index papers 125 125 125 5567 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cobaltâ€containing spherical glass nanoparticles for therapeutic ion release. Journal of the American Ceramic Society, 2022, 105, 1765-1777.	3.8	8
2	Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dental Materials, 2022, 38, 94-107.	3.5	4
3	Elucidation of the structural and optical properties of metal cation (Na ⁺ , K ⁺ ,) Tj ETQq1 Inanocrystals. Journal of Materials Chemistry A, 2022, 10, 3562-3578.		4 rgBT /O <mark>ve</mark> t 18
4	Characterization of and Structural Insight into Struvite-K, MgKPO ₄ ·6H ₂ O, an Analogue of Struvite. Inorganic Chemistry, 2021, 60, 195-205.	4.0	29
5	Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling. Journal of Sol-Gel Science and Technology, 2021, 97, 11-26.	2.4	4
6	Hydro-Expandable Calcium Phosphate Micro/Nano-Particles with Controllable Size and Morphology for Mechanical Ablation. ACS Applied Nano Materials, 2021, 4, 3877-3886.	5.0	3
7	3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Materials Science and Engineering C, 2021, 123, 111964.	7.3	22
8	The classification of 1D`perovskites'. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 408-415.	1.1	8
9	A novel multinuclear solid-state NMR approach for the characterization of kidney stones. Magnetic Resonance, 2021, 2, 653-671.	1.9	4
10	Mapping of Nâ^'C Bond Formation from a Series of Crystalline Periâ€Substituted Naphthalenes by Charge Density and Solidâ€State NMR Methodologies. Angewandte Chemie, 2021, 133, 24071.	2.0	0
11	Mapping of Nâ^'C Bond Formation from a Series of Crystalline Periâ€Substituted Naphthalenes by Charge Density and Solidâ€State NMR Methodologies. Angewandte Chemie - International Edition, 2021, 60, 23878-23884.	13.8	4
12	Insight into the Partitioning and Clustering Mechanism of Rare-Earth Cations in Alkali Aluminoborosilicate Glasses. Chemistry of Materials, 2021, 33, 7944-7963.	6.7	6
13	The effect of organic cation dynamics on the optical properties in (PEA)2(MA)[Pb2I7] perovskite dimorphs. Journal of Materials Chemistry C, 2021, 9, 17050-17060.	5.5	2
14	Nanostructure of CaO-(Na _{O)-Al_{O(sub>O_{O)-Al_{O(sub>O)-Al_{O(sub>O)-Al_{O(sub>O)-Al_{O(sub>O)-Al_{O)-Al_O}}}	3.1	19
15	1681-1694. Ethylene methyl acrylate copolymer (EMA) assisted dispersion of few-layer graphene nanoplatelets (GNP) in poly(ethylene terephthalate) (PET). Polymer, 2020, 205, 122836.	3.8	19
16	Gallium and tin exchanged Y zeolites for glucose isomerisation and 5-hydroxymethyl furfural production. Applied Catalysis A: General, 2020, 605, 117798.	4.3	15
17	Improved Understanding of Atomic Ordering in Y ₄ 5i _{<i>x</i>} Al _{2â€"<i>x</i>} O _{9â€"<i>x</i>} N _{<i>x</i>} Al _{2â€"<i>x</i>} O _{9â€"<i>x</i>} N _{<i>x</i>} Classified By Sub Al <sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub al<sub="">Al<sub>Al<sub al<s<="" al_{<td>ub> 3.1</td><td>2</td>}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	ub> 3.1	2
18	CaproGlu: Multifunctional tissue adhesive platform. Biomaterials, 2020, 260, 120215.	11.4	19

#	Article	lF	Citations
19	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr ₃ with In Situ Zn ²⁺ Addition. ACS Applied Electronic Materials, 2020, 2, 4002-4011.	4.3	33
20	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	5 . 5	27
21	Simultaneous MQMAS NMR Experiments for Two Half-Integer Quadrupolar Nuclei. Journal of Magnetic Resonance, 2020, 320, 106831.	2.1	2
22	Graphene Oxide Functionalized with 2-Ureido- $4[1H]$ -pyrimidinone for Production of Nacre-Like Films. ACS Applied Nano Materials, 2020, 3, 7161-7171.	5.0	8
23	Measuring multiple 170–13C J-couplings in naphthalaldehydic acid: a combined solid state NMR and density functional theory approach. Physical Chemistry Chemical Physics, 2020, 22, 3400-3413.	2.8	9
24	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
25	Cysteamine functionalised reduced graphene oxide modification of maleated poly(propylene). Polymer, 2020, 203, 122750.	3.8	7
26	Synergistic Voltaglue Adhesive Mechanisms with Alternating Electric Fields. Chemistry of Materials, 2020, 32, 2440-2449.	6.7	16
27	Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Advanced Materials, 2020, 32, e1907864.	21.0	51
28	Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy. Materials Today Advances, 2020, 6, 100066.	5.2	30
29	<i>In Situ</i> Cross-Linking of Silane Functionalized Reduced Graphene Oxide and Low-Density Polyethylene. ACS Applied Polymer Materials, 2020, 2, 1897-1908.	4.4	9
30	Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(I) Mono-Carboxylate and -Nitrate Systems. Australian Journal of Chemistry, 2020, 73, 556.	0.9	0
31	Crystal Chemistry and Antibacterial Properties of Cupriferous Hydroxyapatite. Materials, 2019, 12, 1814.	2.9	27
32	Antibacterial Copper-Doped Calcium Phosphate Glasses for Bone Tissue Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6054-6062.	5.2	31
33	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	6.7	111
34	Synthesis and Characterization of Crystalline NaY-Zeolite from Belitung Kaolin as Catalyst for n-Hexadecane Cracking. Crystals, 2019, 9, 404.	2,2	15
35	Crystallization study of rare earth and molybdenum containing nuclear waste glass ceramics. Journal of the American Ceramic Society, 2019, 102, 5149-5163.	3.8	11
36	Compound-specific \hat{l} 15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry, 2019, 161, 130-138.	2.9	25

#	Article	IF	Citations
37	Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of Colloid and Interface Science, 2019, 547, 382-392.	9.4	43
38	Ring-Opening Polymerization of Cyclic Phosphonates: Access to Inorganic Polymers with a P ^V –O Main Chain. Journal of the American Chemical Society, 2019, 141, 2894-2899.	13.7	13
39	Interstitial Boron Atoms in the Palladium Lattice of an Industrial Type of Nanocatalyst: Properties and Structural Modifications. Journal of the American Chemical Society, 2019, 141, 19616-19624.	13.7	43
40	New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al. Journal of Physical Chemistry C, 2018, 122, 5673-5685.	3.1	75
41	A Combined 25 Mg Solidâ€State NMR and Ab Initio DFT Approach to Probe the Local Structural Differences in Magnesium Acetate Phases Mg(CH 3 COO) 2  â⟨ nH 2 O (n=0, 1, 4). ChemPhy 1722-1732.	/sCh e m, 2	01&, 19,
42	Preservation of Nuclear Spin Order by Precipitation. ChemPhysChem, 2018, 19, 40-44.	2.1	14
43	Direct solid state NMR observation of the 105Pd nucleus in inorganic compounds and palladium metal systems. Physical Chemistry Chemical Physics, 2018, 20, 26734-26743.	2.8	16
44	Synthesis and Characterization of Platinum Nanoparticle Catalysts Capped with Isolated Zinc Species in SBA-15 cChannels: The Wall Effect. ACS Applied Nano Materials, 2018, 1, 6603-6612.	5.0	7
45	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	4.1	22
46	Crystal Chemistry of Vanadium-Bearing Ellestadite Waste Forms. Inorganic Chemistry, 2018, 57, 9122-9132.	4.0	6
47	Electromagnetic Functionalization of Wideâ€Bandgap Dielectric Oxides by Boron Interstitial Doping. Advanced Materials, 2018, 30, e1802025.	21.0	5
48	Facile silane functionalization of graphene oxide. Nanoscale, 2018, 10, 16231-16242.	5.6	86
49	The Crystal Structure of Ba ₃ Nb ₂ O ₈ Revisited: A Neutron Diffraction and Solid-State NMR Study. Inorganic Chemistry, 2017, 56, 2653-2661.	4.0	2
50	Crystal chemical characterization of mullite-type aluminum borate compounds. Journal of Solid State Chemistry, 2017, 247, 173-187.	2.9	16
51	Oxygen Insertion Reactions within the One-Dimensional Channels of Phases Related to FeSb ₂ O ₄ . Inorganic Chemistry, 2017, 56, 594-607.	4.0	14
52	Phosphate content affects structure and bioactivity of solâ€gel silicate bioactive glasses. International Journal of Applied Glass Science, 2017, 8, 372-382.	2.0	23
53	All-optical hyperpolarization of electron and nuclear spins in diamond. Physical Review B, 2017, 96, .	3.2	11
54	Topotactic Fluorine Insertion into the Channels of FeSb ₂ O ₄ -Related Materials. Inorganic Chemistry, 2017, 56, 10078-10089.	4.0	12

#	Article	IF	Citations
55	Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 2017, 139, 12670-12680.	13.7	125
56	Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. Journal of Sol-Gel Science and Technology, 2017, 81, 84-94.	2.4	35
57	Structure–Activity Correlations for Brønsted Acid, Lewis Acid, and Photocatalyzed Reactions of Exfoliated Crystalline Niobium Oxides. ChemCatChem, 2017, 9, 144-154.	3.7	22
58	Bioactive Sol–Gel Glasses at the Atomic Scale: The Complementary Use of Advanced Probe and Computer Modeling Methods. International Journal of Applied Glass Science, 2016, 7, 147-153.	2.0	9
59	Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide. Inorganic Chemistry, 2016, 55, 9306-9315.	4.0	22
60	Formation, stability and crystal structure of mullite-type Al6â^'xBxO9. Journal of Solid State Chemistry, 2016, 243, 124-135.	2.9	17
61	Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 2016, 89, 120-135.	11.0	256
62	Experimental and First-Principles NMR Analysis of Pt(II) Complexes With ⟨i>O⟨ i>,⟨i>O⟨ i>′-Dialkyldithiophosphate Ligands. Journal of Physical Chemistry A, 2016, 120, 8326-8338.	2.5	8
63	<pre>⁸⁷Sr, ¹¹⁹Sn, ¹²⁷I Single and {¹H/¹⁹F}â€Double Resonance Solidâ€State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect, 2016, 1, 4509-4519.</pre>	1.5	8
64	Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6, 99809-99815.	3.6	4
65	New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. Journal of Hazardous Materials, 2016, 318, 772-782.	12.4	91
66	Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds. Inorganic Chemistry, 2016, 55, 5946-5956.	4.0	19
67	Neutron diffraction and multinuclear solid state NMR investigation into the structures of oxide ion conducting La _{9.6} Si ₆ O _{26.4} and La ₈ Sr ₂ Si ₆ O ₂₆ , and their hydrated phases. Dalton Transactions. 2016. 45, 121-133.	3.3	9
68	Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 2016, 469, 213-223.	9.4	133
69	From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. Acta Biomaterialia, 2016, 31, 348-357.	8.3	33
70	UVâ€Initiated Synthesis of Electroactive High Surface Area Ta and Ti Mesoporous Oxides Composites with Polypyrrole Nanowires within the Pores. ChemNanoMat, 2015, 1, 276-284.	2.8	1
71	Synthesis and Solidâ€State NMR Studies of Protonâ€Conducting Mesoporous Niobium Oxide Polymer Composites with Nafionâ€Like Thermal Durability. ChemNanoMat, 2015, 1, 430-437.	2.8	1
72	Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles. Journal of Materials Science, 2015, 50, 7374-7383.	3.7	36

#	Article	IF	Citations
73	Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 7560-7576.	5.8	78
74	How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides. Journal of Physical Chemistry C, 2015, 119, 27695-27707.	3.1	81
75	A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol–gel biomaterials. Physical Chemistry Chemical Physics, 2015, 17, 2540-2549.	2.8	25
76	Furthering the understanding of silicate-substitution in \hat{l} ±-tricalcium phosphate: An X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study. Acta Biomaterialia, 2014, 10, 1443-1450.	8.3	20
77	Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables. Journal of Sol-Gel Science and Technology, 2014, 69, 288-298.	2.4	61
78	The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate. Materials Science and Engineering C, 2014, 34, 123-129.	7.3	35
79	Complexes of Copper(I) Thiocyanate with Monodentate Phosphine and Pyridine Ligands and the <i>P(,N)</i> â€Donor Diphenyl(2â€pyridyl)phosphine. European Journal of Inorganic Chemistry, 2014, 2014, 6104-6116.	2.0	16
80	Ambient and highâ€pressure synthesis, composition, and crystal structure of Bâ€mullites. Crystal Research and Technology, 2014, 49, 21-31.	1.3	8
81	<i>O</i> - <i>vs. N</i> -protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a <i>peri</i> N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group. CrystEngComm, 2014, 16, 8363-8374.	2.6	15
82	Poly($\hat{1}^3$ a \in glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor. Chemistry - A European Journal, 2014, 20, 8149-8160.	3.3	47
83	Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. Journal of Materials Chemistry B, 2014, 2, 668-680.	5.8	109
84	Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFe $<$ sub $>$ x $<$ /sub $>$ Co $<$ sub $>$ 1 \hat{a}^2 x $<$ /sub $>$ PO $<$ sub $>$ 4 $<$ /sub $>$. Journal of Materials Chemistry A, 2014, 2, 11948-11957.	10.3	50
85	Effect of Synthesis Parameters on the Electrochemical Properties of Highâ€Surfaceâ€Area Mesoporous Titanium Oxide with Polypyrrole Nanowires in the Pores. ChemElectroChem, 2014, 1, 2153-2162.	3.4	3
86	Deoxygenation of Graphene Oxide: Reduction or Cleaning?. Chemistry of Materials, 2013, 25, 3580-3588.	6.7	198
87	Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR. Physical Chemistry Chemical Physics, 2013, 15, 17195.	2.8	39
88	A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates. CrystEngComm, 2013, 15, 8823.	2.6	24
89	Whewellite, CaC2O4â«H2O: structural study by a combined NMR, crystallography and modelling approach. CrystEngComm, 2013, 15, 8840.	2.6	40
90	Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals. Journal of Materials Science, 2013, 48, 1787-1793.	3.7	33

#	Article	IF	CITATIONS
91	Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomaterialia, 2013, 9, 7662-7671.	8.3	58
92	Neutron diffraction and 11B solid state NMR studies of the crystal structure of B-doped mullite. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, , 130521045435006.	0.8	3
93	Models for incomplete nucleophilic attack on a protonated carbonyl group and electron-deficient alkenes: salts and zwitterions from 1 -dimethylamino-naphthalene- 8 -carbaldehyde. Organic and Biomolecular Chemistry, 2012, 10, 7763.	2.8	11
94	Mechanochemical and solution synthesis, and crystal structures and IR and solid-state (CPMAS) NMR spectroscopy of some bis(triphenylphosphine)silver(i) mono- and di-hydrogencitrate systems. Dalton Transactions, 2012, 41, 5409.	3.3	15
95	Calcium sulfate-phosphate composites with enhanced water resistance. Journal of Materials Chemistry, 2012, 22, 4837.	6.7	4
96	Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. Journal of Materials Chemistry, 2012, 22, 1613-1619.	6.7	59
97	Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes. Journal of Materials Chemistry, 2012, 22, 8287.	6.7	44
98	An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. Journal of Materials Chemistry, 2012, 22, 22212.	6.7	40
99	Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(i) thiocyanate adducts with bulky monodentate tertiary phosphine ligands. Dalton Transactions, 2012, 41, 7513.	3.3	32
100	The Question of cis versus trans Configuration in Octahedral Metal Diketonates: An In-Depth Investigation on Diorganobis(4-acyl-5-pyrazolonato)tin(IV) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 1369-1379.	2.0	12
101	PatternsUnexpected Outcomes of the Oxidation of (Pentafluorophenyl)triphenylphosphanegold(Í)The Question of <i>ci>ci></i> versus <i>trans</i> Configuration in Octahedral Metal Diketonates: An Inâ€Depth Investigation on Diorganobis(4â€acylâ€5â€pyrazolonato)tin(IV) Complexes Chelating C4â€Bound Imidazolylidene Complexes through Oxidative Addition of Imidazolylidene	2.0	0
102	Ruthenium Acetate Complexes as Versatile P. European Journal of Inorganic Chemistry, 2012, 2012, . High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research, 2011, 26, 2355-2368.	2.6	21
103	Solution and mechanochemical syntheses, and spectroscopic and structural studies in the silver(i) (bi-)carbonate: triphenylphosphine system. Dalton Transactions, 2011, 40, 7210.	3.3	32
104	Protonic defects and water incorporation in Si and Ge-based apatite ionic conductors. Journal of Materials Chemistry, 2010, 20, 2766.	6.7	36
105	Structural and Spectroscopic Characterisation of Linearly Coordinated Gold(I) Tribenzylphosphane Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 2044-2053.	2.0	7
106	A ⁹³ Nb Solidâ€State NMR and Density Functional Theory Study of Four―and Sixâ€Coordinate Niobate Systems. Chemistry - A European Journal, 2010, 16, 3222-3239.	3.3	56
107	Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State Nuclear Magnetic Resonance, 2010, 38, 1-18.	2.3	79
108	Structure and Phase Transformations in the Titanosilicate, Sitinakite. The Importance of Water. Chemistry of Materials, 2010, 22, 4222-4231.	6.7	14

#	Article	IF	Citations
109	Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. Journal of Materials Chemistry, 2010, 20, 10234.	6.7	90
110	Synthesis of bioactive class II poly(\hat{l}^3 -glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 2010, 20, 8952.	6.7	79
111	Tailoring the nanoporosity of sol–gel derived bioactive glass using trimethylethoxysilane. Journal of Materials Chemistry, 2010, 20, 1489.	6.7	9
112	Microcrystalline Hexagonal Tungsten Bronze. 1. Basis of Ion Exchange Selectivity for Cesium and Strontium. Inorganic Chemistry, 2009, 48, 5648-5662.	4.0	34
113	IR Spectroscopy of Two Polymorphs of Copper(I) Thiocyanate and of Complexes ofCopper(I) Thiocyanate with Thiourea and Ethylenethiourea. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1478-1486.	0.7	19
114	Sol–gel matrices for controlled release: from macro to nano using emulsion polymerisation. Journal of Sol-Gel Science and Technology, 2008, 46, 393-409.	2.4	49
115	A High-Resolution ⁴³ Ca Solid-State NMR Study of the Calcium Sites of Hydroxyapatite. Journal of the American Chemical Society, 2008, 130, 2412-2413.	13.7	54
116	29Si, 27Al, 1H and 23Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers. Applied Magnetic Resonance, 2007, 32, 663-689.	1.2	126
117	A Theoretical Study of 51V Electric Field Gradient Tensors in Pyrovanadates and Metavanadates. Applied Magnetic Resonance, 2007, 32, 691-708.	1.2	12
118	Crystal structures and vibrational and solid-state (CPMAS) NMR spectroscopy of some bis(triphenylphosphine)silver(I) sulfate, selenate and phosphate systems. Dalton Transactions RSC, 2001, , 20-28.	2.3	39
119	Disorder in the lactato group of (lactato-O,O′)bis(triphenylphosphine-P)silver(I) corroborated by31P two-dimensional CPCOSY NMR. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 24-25.	0.4	4
120	Crystal structures and vibrational and solid-state (CPMAS) NMR spectroscopic studies in the tris(triphenylphosphine)-copper(I) and -silver(I) formate systems. Dalton Transactions RSC, 2000, , 753-762.	2.3	31
121	Crystal Structure, Infrared and Solid State CP MAS NMR Characterization of [(PPh3)2AgO2CH] and of [(PPh3)2AgO2CH].cntdot.2HCO2H, a Complex of the H-Bonded [H2(HCO2)3]- Species. The Journal of Physical Chemistry, 1995, 99, 3909-3917.	2.9	20
122	Nuclear spin coupling effects in phosphorus-31 MAS NMR spectra of solid bis(triphenylphosphine)(phenylcyanamido)copper(I) complexes. The Journal of Physical Chemistry, 1992, 96, 7560-7567.	2.9	31