List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2703206/publications.pdf Version: 2024-02-01

ΙΟΗΝ ΗΛΝΝΛ

#	Article	IF	CITATIONS
1	Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors. Cement and Concrete Research, 2016, 89, 120-135.	11.0	256
2	Deoxygenation of Graphene Oxide: Reduction or Cleaning?. Chemistry of Materials, 2013, 25, 3580-3588.	6.7	198
3	Controlling particle size in the Stöber process and incorporation of calcium. Journal of Colloid and Interface Science, 2016, 469, 213-223.	9.4	133
4	29Si, 27Al, 1H and 23Na MAS NMR Study of the Bonding Character in Aluminosilicate Inorganic Polymers. Applied Magnetic Resonance, 2007, 32, 663-689.	1.2	126
5	Structural Studies of Bulk to Nanosize Niobium Oxides with Correlation to Their Acidity. Journal of the American Chemical Society, 2017, 139, 12670-12680.	13.7	125
6	Cesium Copper Iodide Tailored Nanoplates and Nanorods for Blue, Yellow, and White Emission. Chemistry of Materials, 2019, 31, 9003-9011.	6.7	111
7	Chemical characterisation and fabrication of chitosan–silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane. Journal of Materials Chemistry B, 2014, 2, 668-680.	5.8	109
8	New composites of nanoparticle Cu (I) oxide and titania in a novel inorganic polymer (geopolymer) matrix for destruction of dyes and hazardous organic pollutants. Journal of Hazardous Materials, 2016, 318, 772-782.	12.4	91
9	Ion exchange in the charge-balancing sites of aluminosilicate inorganic polymers. Journal of Materials Chemistry, 2010, 20, 10234.	6.7	90
10	Facile silane functionalization of graphene oxide. Nanoscale, 2018, 10, 16231-16242.	5.6	86
11	How the Method of Synthesis Governs the Local and Global Structure of Zinc Aluminum Layered Double Hydroxides. Journal of Physical Chemistry C, 2015, 119, 27695-27707.	3.1	81
12	Recent technique developments and applications of solid state NMR in characterising inorganic materials. Solid State Nuclear Magnetic Resonance, 2010, 38, 1-18.	2.3	79
13	Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. Journal of Materials Chemistry, 2010, 20, 8952.	6.7	79
14	Highly flexible silica/chitosan hybrid scaffolds with oriented pores for tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 7560-7576.	5.8	78
15	New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al. Journal of Physical Chemistry C, 2018, 122, 5673-5685.	3.1	75
16	Silica–gelatin hybrids for tissue regeneration: inter-relationships between the process variables. Journal of Sol-Gel Science and Technology, 2014, 69, 288-298.	2.4	61
17	Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. Journal of Materials Chemistry, 2012, 22, 1613-1619.	6.7	59
18	Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomaterialia, 2013, 9, 7662-7671.	8.3	58

#	Article	IF	CITATIONS
19	A ⁹³ Nb Solidâ€State NMR and Density Functional Theory Study of Four―and Sixâ€Coordinate Niobate Systems. Chemistry - A European Journal, 2010, 16, 3222-3239.	3.3	56
20	A High-Resolution ⁴³ Ca Solid-State NMR Study of the Calcium Sites of Hydroxyapatite. Journal of the American Chemical Society, 2008, 130, 2412-2413.	13.7	54
21	Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. Advanced Materials, 2020, 32, e1907864.	21.0	51
22	Characterising local environments in high energy density Li-ion battery cathodes: a combined NMR and first principles study of LiFe _x Co _{1â^'x} PO ₄ . Journal of Materials Chemistry A, 2014, 2, 11948-11957.	10.3	50
23	Sol–gel matrices for controlled release: from macro to nano using emulsion polymerisation. Journal of Sol-Gel Science and Technology, 2008, 46, 393-409.	2.4	49
24	Poly(γâ€glutamic acid)/Silica Hybrids with Calcium Incorporated in the Silica Network by Use of a Calcium Alkoxide Precursor. Chemistry - A European Journal, 2014, 20, 8149-8160.	3.3	47
25	Synthesis and characterisation of oxyanion-doped manganites for potential application as SOFC cathodes. Journal of Materials Chemistry, 2012, 22, 8287.	6.7	44
26	Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of Colloid and Interface Science, 2019, 547, 382-392.	9.4	43
27	Interstitial Boron Atoms in the Palladium Lattice of an Industrial Type of Nanocatalyst: Properties and Structural Modifications. Journal of the American Chemical Society, 2019, 141, 19616-19624.	13.7	43
28	An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron diffraction, X-ray diffraction, EXAFS and multinuclear solid state NMR. Journal of Materials Chemistry, 2012, 22, 22212.	6.7	40
29	Whewellite, CaC2O4â‹H2O: structural study by a combined NMR, crystallography and modelling approach. CrystEngComm, 2013, 15, 8840.	2.6	40
30	Crystal structures and vibrational and solid-state (CPMAS) NMR spectroscopy of some bis(triphenylphosphine)silver(I) sulfate, selenate and phosphate systems. Dalton Transactions RSC, 2001, , 20-28.	2.3	39
31	Characterisation of platinum-based fuel cell catalyst materials using 195Pt wideline solid state NMR. Physical Chemistry Chemical Physics, 2013, 15, 17195.	2.8	39
32	Protonic defects and water incorporation in Si and Ge-based apatite ionic conductors. Journal of Materials Chemistry, 2010, 20, 2766.	6.7	36
33	Novel photoactive inorganic polymer composites of inorganic polymers with copper(I) oxide nanoparticles. Journal of Materials Science, 2015, 50, 7374-7383.	3.7	36
34	The role of the chemical composition of monetite on the synthesis and properties of α-tricalcium phosphate. Materials Science and Engineering C, 2014, 34, 123-129.	7.3	35
35	Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships. Journal of Sol-Gel Science and Technology, 2017, 81, 84-94. 	2.4	35
36	Microcrystalline Hexagonal Tungsten Bronze. 1. Basis of Ion Exchange Selectivity for Cesium and Strontium. Inorganic Chemistry, 2009, 48, 5648-5662.	4.0	34

#	Article	IF	CITATIONS
37	Magnesium analogues of aluminosilicate inorganic polymers (geopolymers) from magnesium minerals. Journal of Materials Science, 2013, 48, 1787-1793.	3.7	33
38	From crystalline to amorphous calcium pyrophosphates: A solid state Nuclear Magnetic Resonance perspective. Acta Biomaterialia, 2016, 31, 348-357.	8.3	33
39	Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr ₃ with In Situ Zn ²⁺ Addition. ACS Applied Electronic Materials, 2020, 2, 4002-4011.	4.3	33
40	Solution and mechanochemical syntheses, and spectroscopic and structural studies in the silver(i) (bi-)carbonate: triphenylphosphine system. Dalton Transactions, 2011, 40, 7210.	3.3	32
41	Mechanochemical and solution synthesis, X-ray structure and IR and 31P solid state NMR spectroscopic studies of copper(i) thiocyanate adducts with bulky monodentate tertiary phosphine ligands. Dalton Transactions, 2012, 41, 7513.	3.3	32
42	Nuclear spin coupling effects in phosphorus-31 MAS NMR spectra of solid bis(triphenylphosphine)(phenylcyanamido)copper(I) complexes. The Journal of Physical Chemistry, 1992, 96, 7560-7567.	2.9	31
43	Crystal structures and vibrational and solid-state (CPMAS) NMR spectroscopic studies in the tris(triphenylphosphine)-copper(I) and -silver(I) formate systems. Dalton Transactions RSC, 2000, , 753-762.	2.3	31
44	Antibacterial Copper-Doped Calcium Phosphate Glasses for Bone Tissue Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6054-6062.	5.2	31
45	Electrospinning 3D bioactive glasses for wound healing. Biomedical Materials (Bristol), 2020, 15, 015014.	3.3	30
46	Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy. Materials Today Advances, 2020, 6, 100066.	5.2	30
47	Characterization of and Structural Insight into Struvite-K, MgKPO ₄ ·6H ₂ O, an Analogue of Struvite. Inorganic Chemistry, 2021, 60, 195-205.	4.0	29
48	Crystal Chemistry and Antibacterial Properties of Cupriferous Hydroxyapatite. Materials, 2019, 12, 1814.	2.9	27
49	Investigating the structure–function relationship in triple cation perovskite nanocrystals for light-emitting diode applications. Journal of Materials Chemistry C, 2020, 8, 11805-11821.	5.5	27
50	A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol–gel biomaterials. Physical Chemistry Chemical Physics, 2015, 17, 2540-2549.	2.8	25
51	Compound-specific δ15N values express differences in amino acid metabolism in plants of varying lignin content. Phytochemistry, 2019, 161, 130-138.	2.9	25
52	A multinuclear solid state NMR, density functional theory and X-Ray diffraction study of hydrogen bonding in Group I hydrogen dibenzoates. CrystEngComm, 2013, 15, 8823.	2.6	24
53	Phosphate content affects structure and bioactivity of solâ€gel silicate bioactive glasses. International Journal of Applied Glass Science, 2017, 8, 372-382.	2.0	23
54	Structural Investigation of Zn(II) Insertion in Bayerite, an Aluminum Hydroxide. Inorganic Chemistry, 2016, 55, 9306-9315.	4.0	22

#	Article	IF	CITATIONS
55	Structure–Activity Correlations for BrÃ,nsted Acid, Lewis Acid, and Photocatalyzed Reactions of Exfoliated Crystalline Niobium Oxides. ChemCatChem, 2017, 9, 144-154.	3.7	22
56	Pushing the limits of sensitivity and resolution for natural abundance ⁴³ Ca NMR using ultra-high magnetic field (35.2 T). Chemical Communications, 2018, 54, 9591-9594.	4.1	22
57	3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Materials Science and Engineering C, 2021, 123, 111964.	7.3	22
58	High-resolution solid state NMR experiments for the characterization of calcium phosphate biomaterials and biominerals. Journal of Materials Research, 2011, 26, 2355-2368.	2.6	21
59	Crystal Structure, Infrared and Solid State CP MAS NMR Characterization of [(PPh3)2AgO2CH] and of [(PPh3)2AgO2CH].cntdot.2HCO2H, a Complex of the H-Bonded [H2(HCO2)3]- Species. The Journal of Physical Chemistry, 1995, 99, 3909-3917.	2.9	20
60	Furthering the understanding of silicate-substitution in α-tricalcium phosphate: An X-ray diffraction, X-ray fluorescence and solid-state nuclear magnetic resonance study. Acta Biomaterialia, 2014, 10, 1443-1450.	8.3	20
61	IR Spectroscopy of Two Polymorphs of Copper(I) Thiocyanate and of Complexes ofCopper(I) Thiocyanate with Thiourea and Ethylenethiourea. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1478-1486.	0.7	19
62	Multinuclear Solid-State NMR Investigation of Hexaniobate and Hexatantalate Compounds. Inorganic Chemistry, 2016, 55, 5946-5956.	4.0	19
63	Nanostructure of CaO-(Na ₂ O)-Al ₂ O ₃ -SiO ₂ -H ₂ O Gels Revealed by Multinuclear Solid-State Magic Angle Spinning and Multiple Quantum Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2020, 124,	3.1	19
64	Ethylene methyl acrylate copolymer (EMA) assisted dispersion of few-layer graphene nanoplatelets (GNP) in poly(ethylene terephthalate) (PET). Polymer, 2020, 205, 122836.	3.8	19
65	CaproGlu: Multifunctional tissue adhesive platform. Biomaterials, 2020, 260, 120215.	11.4	19
66	Elucidation of the structural and optical properties of metal cation (Na ⁺ , K ⁺ ,) Tj ETQq nanocrystals. Journal of Materials Chemistry A, 2022, 10, 3562-3578.	0 0 0 rgBT 10.3	/Overlock 10 18
67	Formation, stability and crystal structure of mullite-type Al6â^'xBxO9. Journal of Solid State Chemistry, 2016, 243, 124-135.	2.9	17
68	Complexes of Copper(I) Thiocyanate with Monodentate Phosphine and Pyridine Ligands and the <i>P(,N)</i> â€Donor Diphenyl(2â€pyridyl)phosphine. European Journal of Inorganic Chemistry, 2014, 2014, 6104-6116.	2.0	16
69	Crystal chemical characterization of mullite-type aluminum borate compounds. Journal of Solid State Chemistry, 2017, 247, 173-187.	2.9	16
70	Direct solid state NMR observation of the 105Pd nucleus in inorganic compounds and palladium metal systems. Physical Chemistry Chemical Physics, 2018, 20, 26734-26743.	2.8	16
71	Synergistic Voltaglue Adhesive Mechanisms with Alternating Electric Fields. Chemistry of Materials, 2020, 32, 2440-2449.	6.7	16
72	Mechanochemical and solution synthesis, and crystal structures and IR and solid-state (CPMAS) NMR spectroscopy of some bis(triphenylphosphine)silver(i) mono- and di-hydrogencitrate systems. Dalton Transactions, 2012, 41, 5409.	3.3	15

#	Article	IF	CITATIONS
73	<i>O</i> - <i>vs. N</i> -protonation of 1-dimethylaminonaphthalene-8-ketones: formation of a <i>peri</i> N–C bond or a hydrogen bond to the pi-electron density of a carbonyl group. CrystEngComm, 2014, 16, 8363-8374.	2.6	15
74	Synthesis and Characterization of Crystalline NaY-Zeolite from Belitung Kaolin as Catalyst for n-Hexadecane Cracking. Crystals, 2019, 9, 404.	2.2	15
75	Gallium and tin exchanged Y zeolites for glucose isomerisation and 5-hydroxymethyl furfural production. Applied Catalysis A: General, 2020, 605, 117798.	4.3	15
76	Structure and Phase Transformations in the Titanosilicate, Sitinakite. The Importance of Water. Chemistry of Materials, 2010, 22, 4222-4231.	6.7	14
77	Oxygen Insertion Reactions within the One-Dimensional Channels of Phases Related to FeSb ₂ O ₄ . Inorganic Chemistry, 2017, 56, 594-607.	4.0	14
78	Preservation of Nuclear Spin Order by Precipitation. ChemPhysChem, 2018, 19, 40-44.	2.1	14
79	Ring-Opening Polymerization of Cyclic Phosphonates: Access to Inorganic Polymers with a P ^V –O Main Chain. Journal of the American Chemical Society, 2019, 141, 2894-2899.	13.7	13
80	A Theoretical Study of 51V Electric Field Gradient Tensors in Pyrovanadates and Metavanadates. Applied Magnetic Resonance, 2007, 32, 691-708.	1.2	12
81	The Question of cis versus trans Configuration in Octahedral Metal Diketonates: An In-Depth Investigation on Diorganobis(4-acyl-5-pyrazolonato)tin(IV) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 1369-1379.	2.0	12
82	Topotactic Fluorine Insertion into the Channels of FeSb ₂ O ₄ -Related Materials. Inorganic Chemistry, 2017, 56, 10078-10089.	4.0	12
83	Models for incomplete nucleophilic attack on a protonated carbonyl group and electron-deficient alkenes: salts and zwitterions from 1-dimethylamino-naphthalene-8-carbaldehyde. Organic and Biomolecular Chemistry, 2012, 10, 7763.	2.8	11
84	All-optical hyperpolarization of electron and nuclear spins in diamond. Physical Review B, 2017, 96, .	3.2	11
85	Crystallization study of rare earth and molybdenum containing nuclear waste glass ceramics. Journal of the American Ceramic Society, 2019, 102, 5149-5163.	3.8	11
86	Tailoring the nanoporosity of sol–gel derived bioactive glass using trimethylethoxysilane. Journal of Materials Chemistry, 2010, 20, 1489.	6.7	9
87	Bioactive Sol–Gel Glasses at the Atomic Scale: The Complementary Use of Advanced Probe and Computer Modeling Methods. International Journal of Applied Glass Science, 2016, 7, 147-153.	2.0	9
88	Neutron diffraction and multinuclear solid state NMR investigation into the structures of oxide ion conducting La _{9.6} Si ₆ O _{26.4} and La ₈ Si ₂ Si ₆ O ₂₆ , and their hydrated phases. Dalton Transactions, 2016, 45, 121-133.	3.3	9
89	Measuring multiple 17O–13C J-couplings in naphthalaldehydic acid: a combined solid state NMR and density functional theory approach. Physical Chemistry Chemical Physics, 2020, 22, 3400-3413.	2.8	9
90	<i>In Situ</i> Cross-Linking of Silane Functionalized Reduced Graphene Oxide and Low-Density Polyethylene. ACS Applied Polymer Materials, 2020, 2, 1897-1908.	4.4	9

#	Article	IF	CITATIONS
91	Ambient and highâ€pressure synthesis, composition, and crystal structure of Bâ€mullites. Crystal Research and Technology, 2014, 49, 21-31.	1.3	8
92	Experimental and First-Principles NMR Analysis of Pt(II) Complexes With <i>O</i> , <i>O</i> ′-Dialkyldithiophosphate Ligands. Journal of Physical Chemistry A, 2016, 120, 8326-8338.	2.5	8
93	⁸⁷ Sr, ¹¹⁹ Sn, ¹²⁷ I Single and { ¹ H/ ¹⁹ F}â€Double Resonance Solidâ€State NMR Experiments: Application to Inorganic Materials and Nanobuilding Blocks. ChemistrySelect, 2016, 1, 4509-4519.	1.5	8
94	Graphene Oxide Functionalized with 2-Ureido-4[1 <i>H</i>]-pyrimidinone for Production of Nacre-Like Films. ACS Applied Nano Materials, 2020, 3, 7161-7171.	5.0	8
95	The classification of 1D `perovskites'. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2021, 77, 408-415.	1.1	8
96	Cobaltâ€containing spherical glass nanoparticles for therapeutic ion release. Journal of the American Ceramic Society, 2022, 105, 1765-1777.	3.8	8
97	Structural and Spectroscopic Characterisation of Linearly Coordinated Gold(I) Tribenzylphosphane Complexes. European Journal of Inorganic Chemistry, 2010, 2010, 2044-2053.	2.0	7
98	Synthesis and Characterization of Platinum Nanoparticle Catalysts Capped with Isolated Zinc Species in SBA-15 cChannels: The Wall Effect. ACS Applied Nano Materials, 2018, 1, 6603-6612.	5.0	7
99	Cysteamine functionalised reduced graphene oxide modification of maleated poly(propylene). Polymer, 2020, 203, 122750.	3.8	7
100	Crystal Chemistry of Vanadium-Bearing Ellestadite Waste Forms. Inorganic Chemistry, 2018, 57, 9122-9132.	4.0	6
101	Insight into the Partitioning and Clustering Mechanism of Rare-Earth Cations in Alkali Aluminoborosilicate Glasses. Chemistry of Materials, 2021, 33, 7944-7963.	6.7	6
102	Electromagnetic Functionalization of Wideâ€Bandgap Dielectric Oxides by Boron Interstitial Doping. Advanced Materials, 2018, 30, e1802025.	21.0	5
103	Disorder in the lactato group of (lactato-O,O′)bis(triphenylphosphine-P)silver(I) corroborated by31P two-dimensional CPCOSY NMR. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 24-25.	0.4	4
104	Calcium sulfate-phosphate composites with enhanced water resistance. Journal of Materials Chemistry, 2012, 22, 4837.	6.7	4
105	Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6, 99809-99815.	3.6	4
106	A Combined 25 Mg Solid‣tate NMR and Ab Initio DFT Approach to Probe the Local Structural Differences in Magnesium Acetate Phases Mg(CH 3 COO) 2  â‹â€‰nH 2 O (n=0, 1, 4). ChemPhysChæm, 201&, 19, 1722-1732.		D1 8 , 19,
107	Electrospun cotton–wool-like silica/gelatin hybrids with covalent coupling. Journal of Sol-Gel Science and Technology, 2021, 97, 11-26.	2.4	4
108	A novel multinuclear solid-state NMR approach for the characterization of kidney stones. Magnetic	1.9	4

Resonance, 2021, 2, 653-671.

#	Article	IF	CITATIONS
109	Mapping of Nâ^'C Bond Formation from a Series of Crystalline Periâ€5ubstituted Naphthalenes by Charge Density and Solidâ€5tate NMR Methodologies. Angewandte Chemie - International Edition, 2021, 60, 23878-23884.	13.8	4
110	Antibacterial, remineralising and matrix metalloproteinase inhibiting scandium-doped phosphate glasses for treatment of dental caries. Dental Materials, 2022, 38, 94-107.	3.5	4
111	Neutron diffraction and11B solid state NMR studies of the crystal structure of B-doped mullite. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, , 130521045435006.	0.8	3
112	Effect of Synthesis Parameters on the Electrochemical Properties of High‣urfaceâ€Area Mesoporous Titanium Oxide with Polypyrrole Nanowires in the Pores. ChemElectroChem, 2014, 1, 2153-2162.	3.4	3
113	Hydro-Expandable Calcium Phosphate Micro/Nano-Particles with Controllable Size and Morphology for Mechanical Ablation. ACS Applied Nano Materials, 2021, 4, 3877-3886.	5.0	3
114	The Crystal Structure of Ba ₃ Nb ₂ O ₈ Revisited: A Neutron Diffraction and Solid-State NMR Study. Inorganic Chemistry, 2017, 56, 2653-2661.	4.0	2
115	Improved Understanding of Atomic Ordering in Y ₄ Si <sub><i>x</i>/sub>Al<sub>2â€"<i>x</i>/sub>O_{9â€"<i>x</i>}N<sub><i>x</i>/sub>Al<sub>2â€"<i>x</i>/sub>O_{9â€"<i>x</i>}N<sub><i>x</i>/sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub>Al<sub< td=""><td>ub> 3.1</td><td>2</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	ub> 3.1	2
116	Simultaneous MQMAS NMR Experiments for Two Half-Integer Quadrupolar Nuclei. Journal of Magnetic Resonance, 2020, 320, 106831.	2.1	2
117	The effect of organic cation dynamics on the optical properties in (PEA)2(MA)[Pb2I7] perovskite dimorphs. Journal of Materials Chemistry C, 2021, 9, 17050-17060.	5.5	2
118	UVâ€Initiated Synthesis of Electroactive High Surface Area Ta and Ti Mesoporous Oxides Composites with Polypyrrole Nanowires within the Pores. ChemNanoMat, 2015, 1, 276-284.	2.8	1
119	Synthesis and Solidâ State NMR Studies of Protonâ Conducting Mesoporous Niobium Oxide Polymer Composites with Nafionâ Like Thermal Durability. ChemNanoMat, 2015, 1, 430-437. [<i>n</i>)Borametalloarenophanes (<i>n</i>) = 1, 2): Strained Systems with Uncommon Reactivity	2.8	1
120	PatternsUnexpected Outcomes of the Oxidation of (Pentafluorophenyl)triphenylphosphanegold(I)The Question of <i>cis</i> versus <i>trans</i> Configuration in Octahedral Metal Diketonates: An Inâ€Depth Investigation on Diorganobis(4â€acylâ€5â€pyrazolonato)tin(IV) Complexes Chelating C4â€Bound Imidazolvlidene Complexes through Oxidative Addition of Imidazolium Salts to Palladium(0)	2.0	0
121	Rutheniúm Acetate Complexes as Versatile P. European Journal of Inorganic Chemistry, 2012, 2012, . Mapping of Nâ^C Bond Formation from a Series of Crystalline Periâ€Substituted Naphthalenes by Charge Density and Solidâ€State NMR Methodologies. Angewandte Chemie, 2021, 133, 24071.	2.0	0
122	Solid-State NMR, X-Ray Diffraction, and Theoretical Studies of Neutral Mononuclear Molecular Bis(triphenylphosphine)silver(I) Mono-Carboxylate and -Nitrate Systems. Australian Journal of Chemistry, 2020, 73, 556.	0.9	0