Yinsheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270318/publications.pdf

Version: 2024-02-01

301 papers 12,347 citations

53 h-index 92 g-index

307 all docs

307 docs citations

times ranked

307

15894 citing authors

#	Article	IF	CITATIONS
1	Parallelâ€reaction monitoring revealed altered expression of a number of epitranscriptomic reader, writer, and eraser proteins accompanied with colorectal cancer metastasis. Proteomics, 2023, 23, e2200059.	1.3	7
2	Mass spectrometry for human kinome analysis. , 2022, , 191-216.		1
3	Targeted Profiling of Epitranscriptomic Reader, Writer, and Eraser Proteins Accompanied with Radioresistance in Breast Cancer Cells. Analytical Chemistry, 2022, 94, 1525-1530.	3.2	8
4	Chemical Research in Toxicology at 35: Recognizing the Impact of Professor Larry Marnett. Chemical Research in Toxicology, 2022, , .	1.7	0
5	Quantitative proteomics revealed new functions of ALKBH4. Proteomics, 2022, 22, e2100231.	1.3	О
6	DNA–Protein Cross-Linking Sequencing for Genome-Wide Mapping of Thymidine Glycol. Journal of the American Chemical Society, 2022, 144, 454-462.	6.6	14
7	LC-MS/MS for Assessing the Incorporation and Repair of <i>N</i> ² -Alkyl-2′-deoxyguanosine in Genomic DNA. Chemical Research in Toxicology, 2022, 35, 1814-1820.	1.7	3
8	50 Years of Research on Tobacco-Specific Nitrosamines: A Virtual Collection of Emerging Knowledge of Chemical Toxicology of Tobacco and Nicotine Delivery Systems and Call for Contributions to a Landmark Special Issue. Chemical Research in Toxicology, 2022, 35, 899-900.	1.7	1
9	Transcriptional Perturbations of 2,6-Diaminopurine and 2-Aminopurine. ACS Chemical Biology, 2022, 17, 1672-1676.	1.6	5
10	HSP90 and Aha1 modulate microRNA maturation through promoting the folding of Dicer1. Nucleic Acids Research, 2022, 50, 6990-7001.	6.5	4
11	Targeted Proteomic Approaches for Proteome-Wide Characterizations of the AMP-Binding Capacities of Kinases. Journal of Proteome Research, 2022, 21, 2063-2070.	1.8	3
12	GLOBAL AND TARGETED PROFILING OF GTPâ€BINDING PROTEINS IN BIOLOGICAL SAMPLES BY MASS SPECTROMETRY. Mass Spectrometry Reviews, 2021, 40, 215-235.	2.8	7
13	YY1 interacts with guanine quadruplexes to regulate DNA looping and gene expression. Nature Chemical Biology, 2021, 17, 161-168.	3.9	68
14	Mitochondrial Transcription Factor A Binds to and Promotes Mutagenic Transcriptional Bypass of <i>O</i> ⁴ -Alkylthymidine Lesions. Analytical Chemistry, 2021, 93, 1161-1169.	3.2	3
15	m ⁶ A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chemical Biology, 2021, 16, 324-333.	1.6	98
16	DNA Polymerase II Supports the Replicative Bypass of N2-Alkyl-2′-deoxyguanosine Lesions in Escherichia coli Cells. Chemical Research in Toxicology, 2021, 34, 695-698.	1.7	1
17	RNA-binding proteins contribute to small RNA loading in plant extracellular vesicles. Nature Plants, 2021, 7, 342-352.	4.7	153
18	Targeted Proteomic Analysis Revealed Kinome Reprogramming during Acquisition of Radioresistance in Breast Cancer Cells. Journal of Proteome Research, 2021, 20, 2830-2838.	1.8	6

#	Article	IF	CITATIONS
19	Interstrand Cross-Link Formation Involving Reaction of a Mispaired Cytosine Residue with an Abasic Site in Duplex DNA. Chemical Research in Toxicology, 2021, 34, 1124-1132.	1.7	9
20	Modulation of N-terminal methyltransferase 1 by an N6-methyladenosine-based epitranscriptomic mechanism. Biochemical and Biophysical Research Communications, 2021, 546, 54-58.	1.0	11
21	PANDORA-seq expands the repertoire of regulatory small RNAs by overcoming RNA modifications. Nature Cell Biology, 2021, 23, 424-436.	4.6	115
22	Quantitative Proteomic Analysis Revealed Broad Roles of <i>N</i> ⁶ -Methyladenosine in Heat Shock Response. Journal of Proteome Research, 2021, 20, 3611-3620.	1.8	4
23	Neurotoxicology. Chemical Research in Toxicology, 2021, 34, 1197-1197.	1.7	1
24	METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Reports, 2021, 35, 109091.	2.9	124
25	An aged immune system drives senescence and ageing of solid organs. Nature, 2021, 594, 100-105.	13.7	368
26	Chemoproteomic Approach toward Probing the Interactomes of Perfluoroalkyl Substances. Analytical Chemistry, 2021, 93, 9634-9639.	3.2	5
27	Editorial: Focus on Protein Footprinting, Honoring Michael Gross, Recipient of the 2020 John B. Fenn Award for a Distinguished Contribution in Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1565-1566.	1.2	0
28	ATF3 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an $\langle i \rangle N \langle i \rangle \langle sup \rangle -Methyladenosine-Based Epitranscriptomic Mechanism. Chemical Research in Toxicology, 2021, 34, 1814-1821.$	1.7	17
29	Proteome-Wide Characterizations of $\langle i \rangle N \langle i \rangle \langle \sup \rangle 6 \langle \sup \rangle$ -Methyl-Adenosine Triphosphate- and $\langle i \rangle N \langle i \rangle \langle \sup \rangle 6 \langle \sup \rangle$ -Furfuryl-Adenosine Triphosphate-Binding Capabilities of Kinases. Analytical Chemistry, 2021, 93, 13251-13259.	3.2	4
30	A Quantitative Proteomic Approach for the Identification of DNA Guanine Quadruplex-Binding Proteins. Journal of Proteome Research, 2021, 20, 4919-4924.	1.8	8
31	Targeting chaperon protein HSP70 as a novel therapeutic strategy for FLT3-ITD-positive acute myeloid leukemia. Signal Transduction and Targeted Therapy, 2021, 6, 334.	7.1	6
32	HIV reprograms host m6Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nature Communications, 2021, 12, 5543.	5.8	24
33	DNA Polymerase η Promotes the Transcriptional Bypass of <i>N</i> ² -Alkyl-2′-deoxyguanosine Adducts in Human Cells. Journal of the American Chemical Society, 2021, 143, 16197-16205.	6.6	9
34	The proximal proteome of 17 SARS-CoV-2 proteins links to disrupted antiviral signaling and host translation. PLoS Pathogens, 2021, 17, e1009412.	2.1	27
35	G3BP1 binds to guanine quadruplexes in mRNAs to modulate their stabilities. Nucleic Acids Research, 2021, 49, 11323-11336.	6.5	21
36	Targeted Quantitative Profiling of GTP-Binding Proteins Associated with Metastasis of Melanoma Cells. Journal of Proteome Research, 2021, 20, 5189-5195.	1.8	1

#	Article	IF	CITATIONS
37	HILIC-MS/MS for the Determination of Methylated Adenine Nucleosides in Human Urine. Analytical Chemistry, 2021, 93, 17060-17068.	3.2	17
38	YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Analytical Chemistry, 2020, 92, 1346-1354.	3.2	50
39	Low-Level Saturated Fatty Acid Palmitate Benefits Liver Cells by Boosting Mitochondrial Metabolism via CDK1-SIRT3-CPT2 Cascade. Developmental Cell, 2020, 52, 196-209.e9.	3.1	36
40	Adenylate Kinase 4 Modulates the Resistance of Breast Cancer Cells to Tamoxifen through an m6A-Based Epitranscriptomic Mechanism. Molecular Therapy, 2020, 28, 2593-2604.	3.7	52
41	Call for Papers for the Special Issue on Neurotoxicology. Chemical Research in Toxicology, 2020, 33, 2009-2009.	1.7	0
42	N6-methyladenine in DNA antagonizes SATB1 in early development. Nature, 2020, 583, 625-630.	13.7	53
43	VEZF1–guanine quadruplex DNA interaction regulates alternative polyadenylation and detyrosinase activity of VASH1. Nucleic Acids Research, 2020, 48, 11994-12003.	6.5	9
44	Associations of smoking and air pollution with peripheral blood RNA N6-methyladenosine in the Beijing truck driver air pollution study. Environment International, 2020, 144, 106021.	4.8	25
45	Detection and Discrimination of DNA Adducts Differing in Size, Regiochemistry, and Functional Group by Nanopore Sequencing. Chemical Research in Toxicology, 2020, 33, 2944-2952.	1.7	14
46	Chemical Proteomic Profiling of the Interacting Proteins of Isoprenoid Pyrophosphates. Analytical Chemistry, 2020, 92, 8031-8036.	3.2	3
47	Arsenic Exposure and Compromised Protein Quality Control. Chemical Research in Toxicology, 2020, 33, 1594-1604.	1.7	29
48	Proteome-wide Interrogation of Small GTPases Regulated by <i>N</i> ⁶ -Methyladenosine Modulators. Analytical Chemistry, 2020, 92, 10145-10152.	3.2	9
49	Discovery of TBC1D7 as a Potential Driver for Melanoma Cell Invasion. Proteomics, 2020, 20, e1900347.	1.3	7
50	Normalized retention time for scheduled liquid chromatography-multistage mass spectrometry analysis of epitranscriptomic modifications. Journal of Chromatography A, 2020, 1623, 461181.	1.8	4
51	Collision-Induced Dissociation Studies of Protonated Ions of Alkylated Thymidine and $2\hat{a}\in^2$ -Deoxyguanosine. Journal of the American Society for Mass Spectrometry, 2020, 31, 927-937.	1.2	0
52	Ada protein– and sequence context–dependent mutagenesis of alkyl phosphotriester lesions in Escherichia coli cells. Journal of Biological Chemistry, 2020, 295, 8775-8783.	1.6	4
53	<i>N</i> -Acetyl-cysteine and Mechanisms Involved in Resolution of Chronic Wound Biofilm. Journal of Diabetes Research, 2020, 2020, 1-16.	1.0	15
54	A Targeted Quantitative Proteomic Method Revealed a Substantial Reprogramming of Kinome during Melanoma Metastasis. Scientific Reports, 2020, 10, 2485.	1.6	5

#	Article	IF	Citations
55	Molecular Mechanisms of Arsenic-Induced Disruption of DNA Repair. Chemical Research in Toxicology, 2020, 33, 709-726.	1.7	80
56	Replication of Pyridyloxobutyl Phosphotriester Lesions in Cells. Chemical Research in Toxicology, 2020, 33, 308-311.	1.7	5
57	The roles of polymerases ν and Î, in replicative bypass of O6- and N2-alkyl-2′-deoxyguanosine lesions in human cells. Journal of Biological Chemistry, 2020, 295, 4556-4562.	1.6	7
58	Arsenite Binds to ZNF598 to Perturb Ribosome-Associated Protein Quality Control. Chemical Research in Toxicology, 2020, 33, 1644-1652.	1.7	6
59	Targeted Proteomic Analysis of Small GTPases in Murine Adipogenesis. Analytical Chemistry, 2020, 92, 6756-6763.	3.2	5
60	HSP90 inhibitors stimulate DNAJB4 protein expression through a mechanism involving N6-methyladenosine. Nature Communications, 2019, 10, 3613.	5.8	24
61	The Impact of Minor-Groove <i>N</i> ² -Alkyl-2′-deoxyguanosine Lesions on DNA Replication in Human Cells. ACS Chemical Biology, 2019, 14, 1708-1716.	1.6	12
62	SLIRP Interacts with Helicases to Facilitate $2\hat{a}\in^2$ -O-Methylation of rRNA and to Promote Translation. Journal of the American Chemical Society, 2019, 141, 10958-10961.	6.6	6
63	Elevated Hexokinase II Expression Confers Acquired Resistance to 4-Hydroxytamoxifen in Breast Cancer Cells. Molecular and Cellular Proteomics, 2019, 18, 2273-2284.	2.5	35
64	Targeted Quantitative Proteomic Approach for High-Throughput Quantitative Profiling of Small GTPases in Brain Tissues of Alzheimer's Disease Patients. Analytical Chemistry, 2019, 91, 12307-12314.	3.2	7
65	High-Throughput Targeted Quantitative Analysis of the Interaction between HSP90 and Kinases. Analytical Chemistry, 2019, 91, 11507-11509.	3.2	6
66	Epigenetics in Toxicology. Chemical Research in Toxicology, 2019, 32, 793-793.	1.7	1
67	Targeted Quantitative Proteomics Revealed Arsenite-induced Proteasomal Degradation of RhoB in Fibroblast Cells. Chemical Research in Toxicology, 2019, 32, 1343-1350.	1.7	1
68	Parallel-Reaction-Monitoring-Based Proteome-Wide Profiling of Differential Kinase Protein Expression during Prostate Cancer Metastasis in Vitro. Analytical Chemistry, 2019, 91, 9893-9900.	3.2	19
69	Repair and translesion synthesis of O6-alkylguanine DNA lesions in human cells. Journal of Biological Chemistry, 2019, 294, 11144-11153.	1.6	21
70	Interstrand DNA Cross-Links Derived from Reaction of a 2-Aminopurine Residue with an Abasic Site. ACS Chemical Biology, 2019, 14, 1481-1489.	1.6	15
71	Preparation and Purification of Oligodeoxynucleotide Duplexes Containing a Site-Specific, Reduced, Chemically Stable Covalent Interstrand Cross-Link Between a Guanine Residue and an Abasic Site. Methods in Molecular Biology, 2019, 1973, 163-175.	0.4	9
72	Quantitative Interrogation of the Human Kinome Perturbed by Two BRAF Inhibitors. Journal of Proteome Research, 2019, 18, 2624-2631.	1.8	12

#	Article	IF	Citations
73	Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. Chemical Science, 2019, 10, 4272-4281.	3.7	23
74	Human DNA polymerase $\hat{l}\cdot$ has reverse transcriptase activity in cellular environments. Journal of Biological Chemistry, 2019, 294, 6073-6081.	1.6	36
7 5	Targeted Quantitative Kinome Analysis Identifies PRPS2 as a Promoter for Colorectal Cancer Metastasis. Journal of Proteome Research, 2019, 18, 2279-2286.	1.8	16
76	Targeted Quantitative Proteomic Approach for Probing Altered Protein Expression of Small GTPases Associated with Colorectal Cancer Metastasis. Analytical Chemistry, 2019, 91, 6233-6241.	3.2	12
77	DNA replication studies of N-nitroso compound–induced O6-alkyl-2′-deoxyguanosine lesions in Escherichia coli. Journal of Biological Chemistry, 2019, 294, 3899-3908.	1.6	10
78	Cytotoxic and Mutagenic Properties of C1′ and C3′-Epimeric Lesions of 2′-Deoxyribonucleosides in Huma Cells. ACS Chemical Biology, 2019, 14, 478-485.	ın 1.6	1
79	Dual regulation of Arabidopsis AGO2 by arginine methylation. Nature Communications, 2019, 10, 844.	5.8	23
80	Imatinib-Induced Changes in Protein Expression and ATP-Binding Affinities of Kinases in Chronic Myelocytic Leukemia Cells. Analytical Chemistry, 2019, 91, 3209-3214.	3.2	18
81	A DNA aptamer for binding and inhibition of DNA methyltransferase 1. Nucleic Acids Research, 2019, 47, 11527-11537.	6.5	13
82	Chemical Proteomic Profiling of Lysophosphatidic Acid-Binding Proteins. Analytical Chemistry, 2019, 91, 15365-15369.	3.2	6
83	CPT1A/2-Mediated FAO Enhancement—A Metabolic Target in Radioresistant Breast Cancer. Frontiers in Oncology, 2019, 9, 1201.	1.3	91
84	Targeted Profiling of Heat Shock Proteome in Radioresistant Breast Cancer Cells. Chemical Research in Toxicology, 2019, 32, 326-332.	1.7	14
85	Integrated Genomic and Proteomic Analyses Reveal Novel Mechanisms of the Methyltransferase SETD2 in Renal Cell Carcinoma Development. Molecular and Cellular Proteomics, 2019, 18, 437-447.	2.5	22
86	Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chemical Research in Toxicology, 2019, 32, 708-717.	1.7	11
87	Cytotoxic and mutagenic properties of alkyl phosphotriester lesions in Escherichia coli cells. Nucleic Acids Research, 2018, 46, 4013-4021.	6.5	16
88	Cytotoxic and mutagenic properties of minor-groove O2-alkylthymidine lesions in human cells. Journal of Biological Chemistry, 2018, 293, 8638-8644.	1.6	15
89	Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biology, 2018, 17, 259-273.	3.9	103
90	Arsenite Targets the RING Finger Domain of Rbx1 E3 Ubiquitin Ligase to Inhibit Proteasome-Mediated Degradation of Nrf2. Chemical Research in Toxicology, 2018, 31, 380-387.	1.7	23

#	Article	IF	CITATIONS
91	Structural basis for DNMT3A-mediated de novo DNA methylation. Nature, 2018, 554, 387-391.	13.7	215
92	A Targeted Proteomic Approach for Heat Shock Proteins Reveals DNAJB4 as a Suppressor for Melanoma Metastasis. Analytical Chemistry, 2018, 90, 6835-6842.	3.2	29
93	An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications, 2018, 9, 1718.	5 . 8	142
94	Chemical Analysis of DNA Damage. Analytical Chemistry, 2018, 90, 556-576.	3.2	56
95	Targeted Quantitative Profiling of GTP-Binding Proteins in Cancer Cells Using Isotope-Coded GTP Probes. Analytical Chemistry, 2018, 90, 14339-14346.	3.2	13
96	Roles of Small GTPases in Acquired Tamoxifen Resistance in MCF-7 Cells Revealed by Targeted, Quantitative Proteomic Analysis. Analytical Chemistry, 2018, 90, 14551-14560.	3.2	8
97	Normalized Retention Time for Targeted Analysis of the DNA Adductome. Analytical Chemistry, 2018, 90, 14111-14115.	3.2	10
98	Identification of Helicase Proteins as Clients for HSP90. Analytical Chemistry, 2018, 90, 11751-11755.	3.2	16
99	Bypassing a 8,5′-cyclo-2′-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10660-10665.	3.3	14
100	Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Research, 2018, 28, 1090-1102.	5.7	51
101	N-methyladenine DNA Modification in Glioblastoma. Cell, 2018, 175, 1228-1243.e20.	13.5	236
102	Interdisciplinary Approaches and Expanding Scope in Chemical Toxicology. Chemical Research in Toxicology, 2018, 31, 991-991.	1.7	0
103	Epigenetics in Toxicology. Chemical Research in Toxicology, 2018, 31, 822-822.	1.7	1
104	Impact of tobacco-specific nitrosamine–derived DNA adducts on the efficiency and fidelity of DNA replication in human cells. Journal of Biological Chemistry, 2018, 293, 11100-11108.	1.6	29
105	Identification of YTH Domain-Containing Proteins as the Readers for <i>N</i> 1-Methyladenosine in RNA. Analytical Chemistry, 2018, 90, 6380-6384.	3.2	171
106	A novel malic acid-enhanced method for the analysis of 5-methyl-2′-deoxycytidine, 5-hydroxymethyl-2′-deoxycytidine, 5-methylcytidine and 5-hydroxymethylcytidine in human urine using hydrophilic interaction liquid chromatography-tandem mass spectrometry. Analytica Chimica Acta, 2018, 1034, 110-118.	2.6	38
107	Dysregulation of DAF-16/FOXO3A-mediated stress responses accelerates oxidative DNA damage induced aging. Redox Biology, 2018, 18, 191-199.	3.9	39
108	A Targeted Quantitative Proteomic Approach Assesses the Reprogramming of Small GTPases during Melanoma Metastasis. Cancer Research, 2018, 78, 5431-5445.	0.4	18

#	Article	IF	CITATIONS
109	Cytotoxic and mutagenic properties of O6-alkyl-2′-deoxyguanosine lesions in Escherichia coli cells. Journal of Biological Chemistry, 2018, 293, 15033-15042.	1.6	7
110	Nuclear Genomic Instability and Aging. Annual Review of Biochemistry, 2018, 87, 295-322.	5.0	178
111	Evidence for direct interaction between RNA polymerase and the small ribosomal subunit FASEB Journal, 2018, 32, 526.24.	0.2	0
112	Discovery of 2-((3-Acrylamido-4-methylphenyl)amino)- <i>N</i> -(i>-(2-methyl-5-(3,4,5-trimethoxybenzamido)phenyl)-4-(methylan (CHMFL-BMX-078) as a Highly Potent and Selective Type II Irreversible Bone Marrow Kinase in the X Chromosome (BMX) Kinase Inhibitor. Journal of Medicinal Chemistry, 2017, 60, 1793-1816.	nino)pyrim 2.9	iidine-5-carbox 17
113	AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Science Signaling, 2017, 10, .	1.6	170
114	SILAC-Based Quantitative Proteomic Analysis Unveils Arsenite-Induced Perturbation of Multiple Pathways in Human Skin Fibroblast Cells. Chemical Research in Toxicology, 2017, 30, 1006-1014.	1.7	13
115	A role for the base excision repair enzyme NEIL3 in replication-dependent repair of interstrand DNA cross-links derived from psoralen and abasic sites. DNA Repair, 2017, 52, 1-11.	1.3	34
116	Replication and repair of a reduced 2Î,,-deoxyguanosine-abasic site interstrand cross-link in human cells. Nucleic Acids Research, 2017, 45, 6486-6493.	6.5	16
117	Interstrand cross-links arising from strand breaks at true abasic sites in duplex DNA. Nucleic Acids Research, 2017, 45, 6275-6283.	6.5	29
118	Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chemical Biology, 2017, 12, 1858-1866.	1.6	21
119	Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair. Journal of Biological Chemistry, 2017, 292, 11951-11959.	1.6	65
120	Structure-activity relationship investigation for benzonaphthyridinone derivatives as novel potent Bruton's tyrosine kinase (BTK) irreversible inhibitors. European Journal of Medicinal Chemistry, 2017, 137, 545-557.	2.6	16
121	Replicative Bypass Studies of α-Anomeric Lesions of 2′-Deoxyribonucleosides <i>in Vitro</i> . Chemical Research in Toxicology, 2017, 30, 1127-1133.	1.7	4
122	The melanomaâ€linked "redhead― <i>MC1R</i> influences dopaminergic neuron survival. Annals of Neurology, 2017, 81, 395-406.	2.8	41
123	Photocatalytic degradation of norfloxacin on different TiO _{2â^'X} polymorphs under visible light in water. RSC Advances, 2017, 7, 45721-45732.	1.7	26
124	Arsenite Binds to the Zinc Finger Motif of TIP60 Histone Acetyltransferase and Induces Its Degradation via the 26S Proteasome. Chemical Research in Toxicology, 2017, 30, 1685-1693.	1.7	16
125	Position-dependent effects of regioisomeric methylated adenine and guanine ribonucleosides on translation. Nucleic Acids Research, 2017, 45, 9059-9067.	6.5	39
126	Identification of SLIRP as a G Quadruplex-Binding Protein. Journal of the American Chemical Society, 2017, 139, 12426-12429.	6.6	49

#	Article	IF	Citations
127	Cytotoxic and Mutagenic Properties of C3′-Epimeric Lesions of 2′-Deoxyribonucleosides in <i>Escherichia coli</i> Cells. Biochemistry, 2017, 56, 3725-3732.	1.2	4
128	Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Analytical Chemistry, 2017, 89, 9124-9130.	3.2	24
129	¹ H NMR Metabolic Profiling of Earthworm (<i>Eisenia fetida</i>) Coelomic Fluid, Coelomocytes, and Tissue: Identification of a New Metabolite—Malylglutamate. Journal of Proteome Research, 2017, 16, 3407-3418.	1.8	19
130	Site-Selective Sensing of Histone Methylation Enzyme Activity via an Arrayed Supramolecular Tandem Assay. Journal of the American Chemical Society, 2017, 139, 10964-10967.	6.6	57
131	Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7082-E7091.	3.3	31
132	Replication studies of carboxymethylated DNA lesions in human cells. Nucleic Acids Research, 2017, 45, 7276-7284.	6. 5	17
133	Transcription–translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Research, 2017, 45, 11043-11055.	6.5	64
134	Translesion synthesis of <i> O </i> ^{$4 < sup >$ -alkylthymidine lesions in human cells. Nucleic Acids Research, 2016, 44, gkw662.}	6.5	43
135	Reversible Regulation of Promoter and Enhancer Histone Landscape by DNA Methylation in Mouse Embryonic Stem Cells. Cell Reports, 2016, 17, 289-302.	2.9	92
136	Replicative Bypass of <i>O</i> ² -Alkylthymidine Lesions <i>in Vitro</i> . Chemical Research in Toxicology, 2016, 29, 1755-1761.	1.7	8
137	Quantification of Azaserine-Induced Carboxymethylated and Methylated DNA Lesions in Cells by Nanoflow Liquid Chromatography-Nanoelectrospray Ionization Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Analytical Chemistry, 2016, 88, 8036-8042.	3.2	20
138	Tris(1,3-dichloro-2-propyl)phosphate Induces Genome-Wide Hypomethylation within Early Zebrafish Embryos. Environmental Science & Environmental Science	4.6	45
139	A High-Throughput Targeted Proteomic Approach for Comprehensive Profiling of Methylglyoxal-Induced Perturbations of the Human Kinome. Analytical Chemistry, 2016, 88, 9773-9779.	3.2	23
140	Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 2016, 1, 16011.	5.9	373
141	AMP-Activated Protein Kinase and Sirtuin 1 Coregulation of Cortactin Contributes to Endothelial Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2358-2368.	1.1	33
142	Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chemical Research in Toxicology, 2016, 29, 2008-2039.	1.7	131
143	Photochemical Generation of Benzyl Cations That Selectively Cross-Link Guanine and Cytosine in DNA. Organic Letters, 2016, 18, 2544-2547.	2.4	15
144	The Functions of Serine 687 Phosphorylation of Human DNA Polymerase $\hat{\mathbf{l}}$ in UV Damage Tolerance. Molecular and Cellular Proteomics, 2016, 15, 1913-1920.	2.5	16

#	Article	IF	Citations
145	Global discovery of protein kinases and other nucleotideâ€binding proteins by mass spectrometry. Mass Spectrometry Reviews, 2016, 35, 601-619.	2.8	23
146	Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts. Accounts of Chemical Research, 2016, 49, 205-213.	7.6	23
147	<i>In Vitro</i> Lesion Bypass Studies of <i>O</i> ⁴ -Alkylthymidines with Human DNA Polymerase Î. Chemical Research in Toxicology, 2016, 29, 669-675.	1.7	10
148	Roles of Aag, Alkbh2, and Alkbh3 in the Repair of Carboxymethylated and Ethylated Thymidine Lesions. ACS Chemical Biology, 2016, 11, 1332-1338.	1.6	17
149	Comprehensive Assessment of Oxidatively Induced Modifications of DNA in a Rat Model of Human Wilson's Disease. Molecular and Cellular Proteomics, 2016, 15, 810-817.	2.5	34
150	Cytotoxic and mutagenic properties of <i>O</i> ⁴ -alkylthymidine lesions in <i>Escherichia coli</i> <coli>/i>cells. Nucleic Acids Research, 2015, 43, 10795-10803.</coli>	6.5	27
151	Effects of Tet-mediated Oxidation Products of 5-Methylcytosine on DNA Transcription in vitro and in Mammalian Cells. Scientific Reports, 2015, 4, 7052.	1.6	14
152	<i>In vivo</i> detection and replication studies of α-anomeric lesions of 2′-deoxyribonucleosides. Nucleic Acids Research, 2015, 43, 8314-8324.	6.5	13
153	Posttranslational Regulation of Human DNA Polymerase \hat{l}^1 . Journal of Biological Chemistry, 2015, 290, 27332-27344.	1.6	13
154	Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA. Nucleic Acids Research, 2015, 43, 3434-3441.	6.5	39
155	Base J glucosyltransferase does not regulate the sequence specificity of J synthesis in trypanosomatid telomeric DNA. Molecular and Biochemical Parasitology, 2015, 204, 77-80.	0.5	3
156	Profiling Global Kinome Signatures of the Radioresistant MCF-7/C6 Breast Cancer Cells Using MRM-based Targeted Proteomics. Journal of Proteome Research, 2015, 14, 193-201.	1.8	33
157	Crystal Structure of Human DNA Methyltransferase 1. Journal of Molecular Biology, 2015, 427, 2520-2531.	2.0	98
158	Simultaneous Quantification of Methylated Cytidine and Adenosine in Cellular and Tissue RNA by Nano-Flow Liquid Chromatography–Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Analytical Chemistry, 2015, 87, 7653-7659.	3.2	53
159	Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chemical Society Reviews, 2015, 44, 7829-7854.	18.7	114
160	Facile Discovery of Cell-Surface Protein Targets of Cancer Cell Aptamers. Molecular and Cellular Proteomics, 2015, 14, 2692-2700.	2.5	38
161	Identification and Functional Characterizations of N-Terminal α- <i>N</i> -Methylation and Phosphorylation of Serine 461 in Human Poly(ADP-ribose) Polymerase 3. Journal of Proteome Research, 2015, 14, 2575-2582.	1.8	25
162	Chemical Structure and Properties of Interstrand Cross-Links Formed by Reaction of Guanine Residues with Abasic Sites in Duplex DNA. Journal of the American Chemical Society, 2015, 137, 3933-3945.	6.6	49

#	Article	IF	Citations
163	Transcriptional inhibition and mutagenesis induced by N-nitroso compound-derived carboxymethylated thymidine adducts in DNA. Nucleic Acids Research, 2015, 43, 1012-1018.	6.5	18
164	Arsenite Targets the Zinc Finger Domains of Tet Proteins and Inhibits Tet-Mediated Oxidation of 5-Methylcytosine. Environmental Science & Environmenta	4.6	45
165	Structural insight into substrate preference for TET-mediated oxidation. Nature, 2015, 527, 118-122.	13.7	213
166	Genome-wide mapping of 5-hydroxymethylcytosine in three rice cultivars reveals its preferential localization in transcriptionally silent transposable element genes. Journal of Experimental Botany, 2015, 66, 6651-6663.	2.4	26
167	Cell and Protein Recognition at a Supported Bilayer Interface via In Situ Cavitand-Mediated Functional Polymer Growth. Langmuir, 2015, 31, 11152-11157.	1.6	9
168	Quantitative measurement of transcriptional inhibition and mutagenesis induced by site-specifically incorporated DNA lesions in vitro and in vivo. Nature Protocols, 2015, 10, 1389-1406.	5.5	23
169	An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1. Cell Reports, 2015, 12, 1400-1406.	2.9	78
170	Facile Enzymatic Synthesis of Base J-Containing Oligodeoxyribonucleotides and an Analysis of the Impact of Base J on DNA Replication in Cells. PLoS ONE, 2014, 9, e103335.	1.1	3
171	α-N-Methylation of Damaged DNA-binding Protein 2 (DDB2) and Its Function in Nucleotide Excision Repair. Journal of Biological Chemistry, 2014, 289, 16046-16056.	1.6	56
172	Identification of the Glucosyltransferase That Converts Hydroxymethyluracil to Base J in the Trypanosomatid Genome. Journal of Biological Chemistry, 2014, 289, 20273-20282.	1.6	56
173	Cytotoxic and mutagenic properties of regioisomeric <i>O</i> ² -, <i>N</i> 3- and <i>O</i> ⁴ -ethylthymidines in bacterial cells. Carcinogenesis, 2014, 35, 2002-2006.	1.3	19
174	Simultaneous sequencing of oxidized methylcytosines produced by TET/JBP dioxygenases in <i>Coprinopsis cinerea</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5149-58.	3.3	25
175	Syntheses and characterizations of the in vivo replicative bypass and mutagenic properties of the minor-groove O2-alkylthymidine lesions. Nucleic Acids Research, 2014, 42, 10529-10537.	6.5	31
176	Transcriptional bypass of regioisomeric ethylated thymidine lesions by T7 RNA polymerase and human RNA polymerase II. Nucleic Acids Research, 2014, 42, 13706-13713.	6.5	18
177	Fragmentation of Electrospray-Produced Deprotonated Ions of Oligodeoxyribonucleotides Containing an Alkylated or Oxidized Thymidine. Journal of the American Society for Mass Spectrometry, 2014, 25, 1167-1176.	1.2	1
178	Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts. Toxicology and Applied Pharmacology, 2014, 277, 21-29.	1.3	7
179	Effects of Tet-induced oxidation products of 5-methylcytosine on Dnmt1- and DNMT3a-mediated cytosine methylation. Molecular BioSystems, 2014, 10, 1749.	2.9	53
180	Application of Adenosine Triphosphate Affinity Probe and Scheduled Multiple-Reaction Monitoring Analysis for Profiling Global Kinome in Human Cells in Response to Arsenite Treatment. Analytical Chemistry, 2014, 86, 10700-10707.	3.2	11

#	Article	IF	CITATIONS
181	Effects of Tet-Induced Oxidation Products of 5-Methylcytosine on DNA Replication in Mammalian Cells. Chemical Research in Toxicology, 2014, 27, 1304-1309.	1.7	13
182	Quantitative Mass Spectrometry-Based Analysis of \hat{l}^2 -D-Glucosyl-5-Hydroxymethyluracil in Genomic DNA of $<$ b $><$ i $>$ Trypanosoma brucei $<$ li $><$ lb $>$. Journal of the American Society for Mass Spectrometry, 2014, 25, 1763-1770.	1.2	15
183	A Targeted Quantitative Proteomics Strategy for Global Kinome Profiling of Cancer Cells and Tissues. Molecular and Cellular Proteomics, 2014, 13, 1065-1075.	2.5	50
184	Arsenite Binds to the RING Finger Domains of RNF20-RNF40 Histone E3 Ubiquitin Ligase and Inhibits DNA Double-Strand Break Repair. Journal of the American Chemical Society, 2014, 136, 12884-12887.	6.6	43
185	Epimeric 2-Deoxyribose Lesions: Products from the Improper Chemical Repair of 2-Deoxyribose Radicals. Chemical Research in Toxicology, 2014, 27, 470-479.	1.7	8
186	Tet-Mediated Formation of 5-Hydroxymethylcytosine in RNA. Journal of the American Chemical Society, 2014, 136, 11582-11585.	6.6	282
187	A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses. Nature Chemical Biology, 2014, 10, 298-304.	3.9	211
188	Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells. Journal of Chromatography A, 2014, 1365, 54-60.	1.8	8
189	Comprehensive Characterization of ^S GTP-Binding Proteins by Orthogonal Quantitative ^S GTP-Affinity Profiling and ^S GTP/GTP Competition Assays. Analytical Chemistry, 2014, 86, 4550-4558.	3.2	11
190	Genome-wide Mapping of DNA Methylation in the Human Malaria Parasite Plasmodium falciparum. Cell Host and Microbe, 2013, 14, 696-706.	5.1	79
191	Translesion Synthesis of 8,5′-Cyclopurine-2′-deoxynucleosides by DNA Polymerases η, ι, and ζ. Journal of Biological Chemistry, 2013, 288, 28548-28556.	1.6	58
192	Induction of 8,5′-Cyclo-2′-deoxyadenosine and 8,5′-Cyclo-2′-deoxyguanosine in Isolated DNA by Fento Reagents. Chemical Research in Toxicology, 2013, 26, 1361-1366.	n-Type	19
193	Nuclease digestion and mass spectrometric characterization of oligodeoxyribonucleotides containing 1,2-GpG, 1,2-ApG, and 1,3-GpXpG cisplatin intrastrand cross-links. Clinica Chimica Acta, 2013, 420, 160-170.	0.5	4
194	Quantification of 5-Methylcytosine and 5-Hydroxymethylcytosine in Genomic DNA from Hepatocellular Carcinoma Tissues by Capillary Hydrophilic-Interaction Liquid Chromatography/Quadrupole TOF Mass Spectrometry. Clinical Chemistry, 2013, 59, 824-832.	1.5	127
195	Hexavalent Chromium-induced Alteration of Proteomic Landscape in Human Skin Fibroblast Cells. Journal of Proteome Research, 2013, 12, 3511-3518.	1.8	23
196	A Quantitative Mass Spectrometry-Based Approach for Assessing the Repair of 8-Methoxypsoralen-Induced DNA Interstrand Cross-Links and Monoadducts in Mammalian Cells. Analytical Chemistry, 2013, 85, 6732-6739.	3.2	22
197	Proteome-Wide Discovery and Characterizations of Nucleotide-Binding Proteins with Affinity-Labeled Chemical Probes. Analytical Chemistry, 2013, 85, 3198-3206.	3.2	27
198	Isotope-Coded ATP Probe for Quantitative Affinity Profiling of ATP-Binding Proteins. Analytical Chemistry, 2013, 85, 7478-7486.	3.2	31

#	Article	IF	Citations
199	Replication across Regioisomeric Ethylated Thymidine Lesions by Purified DNA Polymerases. Chemical Research in Toxicology, 2013, 26, 1730-1738.	1.7	19
200	Identification of Novel \hat{l} ±-N-Methylation of CENP-B That Regulates Its Binding to the Centromeric DNA. Journal of Proteome Research, 2013, 12, 4167-4175.	1.8	57
201	Quantitative assessment of Tet-induced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic Acids Research, 2013, 41, 6421-6429.	6.5	125
202	Detection of Oxidation Products of 5-Methyl-2′-Deoxycytidine in Arabidopsis DNA. PLoS ONE, 2013, 8, e84620.	1.1	27
203	Mutagenic and Cytotoxic Properties of Oxidation Products of 5-Methylcytosine Revealed by Next-Generation Sequencing. PLoS ONE, 2013, 8, e72993.	1.1	25
204	Single Molecular Analysis of the Encounter of Replication Forks with DNA Interstrand Crosslinks. FASEB Journal, 2013, 27, 538.2.	0.2	0
205	Endogenous formation and repair of oxidatively induced G[8-5 m]T intrastrand cross-link lesion. Nucleic Acids Research, 2012, 40, 7368-7374.	6.5	35
206	Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14007-14012.	3.3	127
207	Effects of 6-Thioguanine and S6-Methylthioguanine on Transcription in Vitro and in Human Cells. Journal of Biological Chemistry, 2012, 287, 40915-40923.	1.6	21
208	5-Aza-2′-deoxycytidine Induced Growth Inhibition of Leukemia Cells through Modulating Endogenous Cholesterol Biosynthesis. Molecular and Cellular Proteomics, 2012, 11, M111.016915-1-M111.016915-8.	2.5	26
209	An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature, 2012, 491, 449-453.	13.7	406
210	<i>In-Vitro</i> Replication Studies on <i>O</i> ² -Methylthymidine and <i>O</i> ⁴ -Methylthymidine. Chemical Research in Toxicology, 2012, 25, 2523-2531.	1.7	16
211	A quantitative assay for assessing the effects of DNA lesions on transcription. Nature Chemical Biology, 2012, 8, 817-822.	3.9	71
212	The oxidative DNA lesions 8,5′â€cyclopurines accumulate with aging in a tissueâ€specific manner. Aging Cell, 2012, 11, 714-716.	3.0	117
213	Accurate and Efficient Bypass of 8,5′-Cyclopurine-2′-Deoxynucleosides by Human and Yeast DNA Polymerase η. Chemical Research in Toxicology, 2012, 25, 1682-1691.	1.7	13
214	NF-κB inhibition delays DNA damage–induced senescence and aging in mice. Journal of Clinical Investigation, 2012, 122, 2601-2612.	3.9	358
215	In Vitro Replication Studies of Carboxymethylated DNA Lesions with <i>Saccharomyces cerevisiae</i> Polymerase Î. Biochemistry, 2011, 50, 7666-7673.	1.2	15
216	Quantification of Oxidative DNA Lesions in Tissues of Long-Evans Cinnamon Rats by Capillary High-Performance Liquid Chromatographyâ^Tandem Mass Spectrometry Coupled with Stable Isotope-Dilution Method. Analytical Chemistry, 2011, 83, 2201-2209.	3.2	103

#	Article	IF	Citations
217	Quantitative Proteomic Analysis Revealed Lovastatin-induced Perturbation of Cellular Pathways in HL-60 Cells. Journal of Proteome Research, 2011, 10, 5463-5471.	1.8	14
218	5-Hydroxymethylcytosine Is Strongly Depleted in Human Cancers but Its Levels Do Not Correlate with <i>IDH1</i> Mutations. Cancer Research, 2011, 71, 7360-7365.	0.4	400
219	Mapping post-translational modifications of histones H2A, H2B and H4 in Schizosaccharomyces pombe. International Journal of Mass Spectrometry, 2011, 301, 159-165.	0.7	6
220	Carboxymethylation of DNA Induced by N-Nitroso Compounds and Its Biological Implications. Advances in Molecular Toxicology, 2011, , 219-243.	0.4	6
221	High-throughput analysis of the mutagenic and cytotoxic properties of DNA lesions by next-generation sequencing. Nucleic Acids Research, 2011, 39, 5945-5954.	6.5	58
222	The Roles of DNA Polymerases l̂º and l̂¹ in the Error-free Bypass of N2-Carboxyalkyl-2′-deoxyguanosine Lesions in Mammalian Cells. Journal of Biological Chemistry, 2011, 286, 17503-17511.	1.6	47
223	6-Thioguanine and <i>S</i> ⁶ -Methylthioguanine Are Mutagenic in Human Cells. ACS Chemical Biology, 2010, 5, 1021-1027.	1.6	32
224	Quantitative Proteomic Analysis Reveals the Perturbation of Multiple Cellular Pathways in HL-60 Cells Induced by Arsenite Treatment. Journal of Proteome Research, 2010, 9, 1129-1137.	1.8	33
225	Quantification of N2-Carboxymethyl-2′-deoxyguanosine in Calf Thymus DNA and Cultured Human Kidney Epithelial Cells by Capillary High-Performance Liquid ChromatographyⰒTandem Mass Spectrometry Coupled with Stable Isotope Dilution Method. Chemical Research in Toxicology, 2010, 23, 74-81.	1.7	22
226	Efficient Formation of the Tandem Thymine Glycol/8-Oxo-7,8-dihydroguanine Lesion in Isolated DNA and the Mutagenic and Cytotoxic Properties of the Tandem Lesions in <i>Escherichia coli</i> Cells. Chemical Research in Toxicology, 2010, 23, 11-19.	1.7	41
227	HMG modifications and nuclear function. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2010, 1799, 28-36.	0.9	54
228	LC-MS/MS Coupled with Stable Isotope Dilution Method for the Quantification of 6-Thioguanine and <i>S</i> ⁶ -Methylthioguanine in Genomic DNA of Human Cancer Cells Treated with 6-Thioguanine. Analytical Chemistry, 2010, 82, 5797-5803.	3.2	21
229	Conformation-Dependent Formation of the G[8â^'5]U Intrastrand Cross-Link in 5-Bromouracil-Containing G-Quadruplex DNA Induced by UVA Irradiation. Biochemistry, 2010, 49, 2346-2350.	1,2	21
230	Quantitative Proteomic Analysis Reveals the Perturbation of Multiple Cellular Pathways in Jurkat-T Cells Induced by Doxorubicin. Journal of Proteome Research, 2010, 9, 5943-5951.	1.8	15
231	Mapping of Lysine Methylation and Acetylation in Core Histones of Neurospora crassa. Biochemistry, 2010, 49, 5236-5243.	1.2	21
232	Synthesis and characterization of oligodeoxyribonucleotides containing a site-specifically incorporated N6 -carboxymethyl-2′-deoxyadenosine or N4 -carboxymethyl-2′-deoxycytidine. Nucleic Acids Research, 2010, 38, 6774-6784.	6.5	16
233	Chemical synthesis of oligodeoxyribonucleotides containing N 3- and O4-carboxymethylthymidine and their formation in DNA. Nucleic Acids Research, 2009, 37, 336-345.	6.5	18
234	Kinetics of deamination and Cu(II)/H 2 O 2 /Ascorbate-induced formation of 5-methylcytosine glycol at CpG sites in duplex DNA. Nucleic Acids Research, 2009, 37, 6635-6643.	6.5	22

#	Article	IF	CITATIONS
235	Fragmentation of isomeric intrastrand crosslink lesions of DNA in an ion-trap mass spectrometer. Journal of the American Society for Mass Spectrometry, 2009, 20, 611-617.	1.2	5
236	Methyl group migration during the fragmentation of singly charged ions of trimethyllysine-containing peptides: Precaution of using MS/MS of singly charged ions for interrogating peptide methylation. Journal of the American Society for Mass Spectrometry, 2009, 20, 1172-1181.	1.2	24
237	Ternary Complexes of Iron, Amyloid-β, and Nitrilotriacetic Acid: Binding Affinities, Redox Properties, and Relevance to Iron-Induced Oxidative Stress in Alzheimer's Disease. Biochemistry, 2009, 48, 7939-7947.	1.2	100
238	In Vitro Replication and Repair Studies of Tandem Lesions Containing Neighboring Thymidine Glycol and 8-Oxo-7,8-dihydro-2′-deoxyguanosine. Chemical Research in Toxicology, 2009, 22, 574-583.	1.7	24
239	6-Thioguanine Perturbs Cytosine Methylation at the CpG Dinucleotide Site by DNA Methyltransferases <i>in Vitro</i> and Acts as a DNA Demethylating Agent <i>in Vivo</i> Biochemistry, 2009, 48, 2290-2299.	1.2	28
240	High mobility group proteins and their post-translational modifications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1159-1166.	1.1	74
241	Bulky DNA Lesions Induced by Reactive Oxygen Species. Chemical Research in Toxicology, 2008, 21, 276-281.	1.7	144
242	LCâ^'MS/MS for the Detection of DNA Interstrand Cross-Links Formed by 8-Methoxypsoralen and UVA Irradiation in Human Cells. Analytical Chemistry, 2008, 80, 2932-2938.	3.2	63
243	Quantitative Analysis of DNA Interstrand Cross-Links and Monoadducts Formed in Human Cells Induced by Psoralens and UVA Irradiation. Analytical Chemistry, 2008, 80, 8790-8798.	3.2	65
244	Mutagenic and Cytotoxic Properties of 6-Thioguanine, S-Methylthioguanine, and Guanine-S6-sulfonic Acid. Journal of Biological Chemistry, 2008, 283, 23665-23670.	1.6	37
245	Efficient and accurate bypass of <i>N</i> ² -(1-carboxyethyl)-2′-deoxyguanosine by DinB DNA polymerase <i>in vitro</i> and <i>in vivo</i> Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8679-8684.	3.3	129
246	Quantification of oxidative single-base and intrastrand cross-link lesions in unmethylated and CpG-methylated DNA induced by Fenton-type reagents. Nucleic Acids Research, 2007, 35, 4833-4844.	6.5	76
247	Formation and genotoxicity of a guanine–cytosine intrastrand cross-link lesion in vivo. Nucleic Acids Research, 2007, 35, 7118-7127.	6.5	104
248	Stereospecific Synthesis and Characterization of Oligodeoxyribonucleotides Containing an ⟨i>N⟨/i>⟨sup>2⟨/sup>-(1-Carboxyethyl)-2â€~-deoxyguanosine. Journal of the American Chemical Society, 2007, 129, 12123-12130.	6.6	28
249	In vitro replication and thermodynamic studies of methylation and oxidation modifications of 6-thioguanine. Nucleic Acids Research, 2007, 35, 3693-3704.	6.5	20
250	A Mass Spectrometric Study on the in Vitro Methylation of HMGA1a and HMGA1b Proteins by PRMTs:  Methylation Specificity, the Effect of Binding to AT-Rich Duplex DNA, and the Effect of C-Terminal Phosphorylation. Biochemistry, 2007, 46, 7896-7906.	1.2	40
251	In Vivo Formation and in Vitro Replication of a Guanineâ°'Thymine Intrastrand Cross-Link Lesion. Biochemistry, 2007, 46, 12757-12763.	1.2	66
252	The Oxidation of Yeast Alcohol Dehydrogenase-1 by Hydrogen Peroxide in Vitro. Journal of Proteome Research, 2007, 6, 216-225.	1.8	52

#	Article	IF	CITATIONS
253	Derivatization with Girard Reagent T Combined with LCâ^'MS/MS for the Sensitive Detection of 5-Formyl-2â€~-deoxyuridine in Cellular DNA. Analytical Chemistry, 2007, 79, 322-326.	3.2	87
254	Mass Spectrometric Analysis of High-Mobility Group Proteins and Their Post-Translational Modifications in Normal and Cancerous Human Breast Tissues. Journal of Proteome Research, 2007, 6, 2304-2314.	1.8	17
255	Homeodomain-Interacting Protein Kinase-2 (HIPK2) Phosphorylates HMGA1a at Ser-35, Thr-52, and Thr-77 and Modulates Its DNA Binding Affinity. Journal of Proteome Research, 2007, 6, 4711-4719.	1.8	26
256	Probing Adenosine Nucleotide-Binding Proteins with an Affinity-Labeled Nucleotide Probe and Mass Spectrometry. Analytical Chemistry, 2007, 79, 5547-5556.	3.2	29
257	UVB-Induced Formation of Intrastrand Cross-Link Products of DNA in MCF-7 Cells Treated with 5-Bromo-2â€~-deoxyuridine. Biochemistry, 2007, 46, 8189-8195.	1.2	32
258	A method to determine the ionization efficiency change of peptides caused by phosphorylation. Journal of the American Society for Mass Spectrometry, 2007, 18, 1973-1976.	1.2	25
259	Redoxâ€dependent formation of disulfide bonds in human replication protein A. Rapid Communications in Mass Spectrometry, 2007, 21, 2743-2749.	0.7	19
260	A quantitative study on the in vitro and in vivo acetylation of high mobility group A1 proteins. Journal of the American Society for Mass Spectrometry, 2007, 18, 1569-1578.	1.2	28
261	Synthesis and Thermodynamic Studies of Oligodeoxyribonucleotides Containing Tandem Lesions of Thymidine Glycol and 8-Oxo-2†deoxyguanosine. Chemical Research in Toxicology, 2006, 19, 837-843.	1.7	13
262	The Photochemistry Of 5-BrdCpdC, dCp5-BrdCpdA, and dCp5-BrdCdT in Aqueous Solution. Nucleosides, Nucleotides and Nucleic Acids, 2006, 25, 279-287.	0.4	3
263	Identification and Quantification of a Guanineâ^Thymine Intrastrand Cross-Link Lesion Induced by Cu(II)/H2O2/Ascorbate. Chemical Research in Toxicology, 2006, 19, 614-621.	1.7	96
264	Acetylation and Phosphorylation of High-Mobility Group A1 Proteins in PC-3 Human Tumor Cellsâ€. Biochemistry, 2006, 45, 7194-7201.	1.2	18
265	Recognition and Incision of Oxidative Intrastrand Cross-Link Lesions by UvrABC Nuclease. Biochemistry, 2006, 45, 10739-10746.	1.2	44
266	Phosphorylation of human high mobility group N1 protein by protein kinase CK2. Biochemical and Biophysical Research Communications, 2006, 345, 1497-1503.	1.0	7
267	Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Rapid Communications in Mass Spectrometry, 2006, 20, 777-784.	0.7	18
268	Differentiation of $2\hat{a} \in ^2$ -O- and $3\hat{a} \in ^2$ -O-methylated Ribonucleosides by tandem mass spectrometry. Journal of the American Society for Mass Spectrometry, 2006, 17, 1096-1099.	1.2	10
269	Collisionally activated dissociation of protonated $2\hat{a}\in 2$ -deoxycytidine, $2\hat{a}\in 2$ -deoxyuridine, and their oxidatively damaged derivatives. Journal of the American Society for Mass Spectrometry, 2006, 17, 1335-1341.	1.2	35
270	Sequence-dependent formation of intrastrand crosslink products from the UVB irradiation of duplex DNA containing a 5-bromo-2′-deoxyuridine or 5-bromo-2′-deoxycytidine. Nucleic Acids Research, 2006, 34, 6521-6529.	6.5	48

#	Article	IF	Citations
271	Further studies on the fragmentation of protonated ions of peptides containing aspartic acid, glutamic acid, cysteine sulfinic acid, and cysteine sulfonic acid. Rapid Communications in Mass Spectrometry, 2005, 19, 23-30.	0.7	26
272	Generation of 5-(2'-deoxycytidyl)methyl radical and the formation of intrastrand cross-link lesions in oligodeoxyribonucleotides. Nucleic Acids Research, 2005, 33, 1593-1603.	6.5	62
273	Tandem Mass Spectrometry for the Examination of the Posttranslational Modifications of High-Mobility Group A1 Proteins:  Symmetric and Asymmetric Dimethylation of Arg25 in HMGA1a Protein. Biochemistry, 2005, 44, 6293-6301.	1.2	38
274	Formation of Intrastrand Cross-Link Products between Cytosine and Adenine from UV Irradiation of d(BrCA) and Duplex DNA Containing a 5-Bromocytosine. Journal of the American Chemical Society, 2005, 127, 13969-13977.	6.6	39
275	Thermodynamic and in Vitro Replication Studies of an Intrastrand G[8-5]C Cross-Link Lesionâ€. Biochemistry, 2005, 44, 8883-8889.	1.2	28
276	The Reactivity of the 5-Hydroxy-5,6-dihydrothymidin-6-yl Radical in Oligodeoxyribonucleotides. Chemical Research in Toxicology, 2005, 18, 1897-1906.	1.7	22
277	Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. Journal of the American Society for Mass Spectrometry, 2004, 15, 697-702.	1.2	48
278	Tandem mass spectrometry for the determination of the sites of DNA interstrand cross-link. Journal of the American Society for Mass Spectrometry, 2004, 15, 1565-1571.	1.2	14
279	LC-MS/MS Identification and Yeast Polymerase η Bypass of a Novel γ-Irradiation-Induced Intrastrand Cross-Link Lesion G[8â^'5]Câ€. Biochemistry, 2004, 43, 6745-6750.	1.2	55
280	Independent Generation of the 5-Hydroxy-5,6-dihydrothymidin-6-yl Radical and Its Reactivity in Dinucleoside Monophosphates. Journal of the American Chemical Society, 2004, 126, 13287-13297.	6.6	45
281	Identification of Novel in Vivo Phosphorylation Sites in High Mobility Group N1 Protein from the MCF-7 Human Breast Cancer Cells. Biochemistry, 2004, 43, 6322-6329.	1.2	12
282	Facile Formation of an Intrastrand Cross-Link Lesion between Cytosine and Guanine upon Pyrex-Filtered UV Light Irradiation of d(BrCG) and Duplex DNA Containing 5-Bromocytosine. Journal of the American Chemical Society, 2004, 126, 6552-6553.	6.6	49
283	Isolation and Characterization of a Novel Crossâ€ink Lesion in d(CpC) Induced by Oneâ€electron Photooxidation [¶] . Photochemistry and Photobiology, 2004, 80, 209-215.	1.3	0
284	Isolation and Characterization of a Novel Cross-link Lesion in d(CpC) Induced by One-electron Photooxidation \hat{A}_{\P} . Photochemistry and Photobiology, 2004, 80, 209.	1.3	11
285	Isolation and Characterization of a Novel Crosslink Lesion in d(CpC) Induced by One-electron Photooxidation. Photochemistry and Photobiology, 2004, 80, 209-15.	1.3	6
286	Structure Elucidation of DNA Interstrand Cross-Link by a Combination of Nuclease P1 Digestion with Mass Spectrometry. Analytical Chemistry, 2003, 75, 6306-6313.	3.2	29
287	Independent Generation of 5-(2â€~-Deoxycytidinyl)methyl Radical and the Formation of a Novel Cross-Link Lesion between 5-Methylcytosine and Guanine. Journal of the American Chemical Society, 2003, 125, 12795-12802.	6.6	71
288	Identification and characterization of a novel cross-link lesion in d(CpC) upon 365-nm irradiation in the presence of 2-methyl-1,4-naphthoquinone. Nucleic Acids Research, 2003, 31, 5413-5424.	6.5	23

#	Article	IF	CITATION
289	ESI-MS/MS for the Differentiation of Diastereomeric Pyrimidine Glycols in Mononucleosides. Analytical Chemistry, 2002, 74, 4505-4512.	3.2	11
290	HPLC Isolation and Mass Spectrometric Characterization of Two Isomers of Thymine Glycols in Oligodeoxynucleotides. Chemical Research in Toxicology, 2002, 15, 671-676.	1.7	32
291	Major Adenine Products from 2-Methyl-1,4-naphthoquinone-Sensitized Photoirradiation at 365 nm. Biochemical and Biophysical Research Communications, 2002, 291, 1252-1257.	1.0	13
292	Mechanisms for the Formation of Major Oxidation Products of Adenine upon 365-nm Irradiation with 2-Methyl-1,4-naphthoquinone as a Sensitizer. Journal of Organic Chemistry, 2002, 67, 8507-8512.	1.7	14
293	Fragmentation of deprotonated ions of oligodeoxynucleotides carrying a 5-formyluracil or 2-aminoimidazolone. Journal of the American Society for Mass Spectrometry, 2002, 13, 1190-1194.	1.2	8
294	Isolation and Mass Spectrometric Characterization of Dimeric Adenine Photoproducts in Oligodeoxynucleotides. Chemical Research in Toxicology, 2001, 14, 738-745.	1.7	23
295	A Method for Quantification from Composite Spectra:Â Application to the Determination of Isomeric DNA Photoproducts by Tandem Mass Spectrometry. Analytical Chemistry, 2001, 73, 185-191.	3.2	9
296	Use of a Combined Enzymatic Digestion/ESI Mass Spectrometry Assay To Study the Effect of TATA-Binding Protein on Photoproduct Formation in a TATA Boxâ€. Biochemistry, 2001, 40, 11785-11793.	1.2	20
297	Fragmentation of electrospray-produced oligodeoxynucleotide ions adducted to metal ions. Journal of the American Society for Mass Spectrometry, 2001, 12, 550-556.	1.2	29
298	Fragmentation of photomodified oligodeoxynucleotides adducted with metal ions in an electrospray-ionization ion-trap mass spectrometer. Journal of the American Society for Mass Spectrometry, 2001, 12, 1174-1179.	1.2	18
299	phrA, the major photoreactivating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobutane-pyrimidine-dimer-specific DNA photolyase. Archives of Microbiology, 2000, 173, 412-417.	1.0	66
300	Differentiation of isomeric photomodified oligodeoxynucleotides by fragmentation of ions produced by matrix-assisted laser desorption ionization and electrospray ionization. Journal of the American Society for Mass Spectrometry, 1999, 10, 329-338.	1.2	32
301	Nuclease P1 Digestion Combined with Tandem Mass Spectrometry for the Structure Determination of	1.7	45