Francesco Bemporad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702825/publications.pdf

Version: 2024-02-01

39 papers 1,436 citations

394421 19 h-index 315739 38 g-index

42 all docs 42 docs citations

times ranked

42

2057 citing authors

#	Article	IF	CITATIONS
1	The Transthyretin/Oleuropein Aglycone Complex: A New Tool against TTR Amyloidosis. Pharmaceuticals, 2022, 15, 277.	3.8	3
2	Conversion of the Native N-Terminal Domain of TDP-43 into a Monomeric Alternative Fold with Lower Aggregation Propensity. Molecules, 2022, 27, 4309.	3.8	3
3	Insight into the Folding and Dimerization Mechanisms of the N-Terminal Domain from Human TDP-43. International Journal of Molecular Sciences, 2020, 21, 6259.	4.1	13
4	Transthyretin Inhibits Primary and Secondary Nucleations of Amyloid- \hat{l}^2 Peptide Aggregation and Reduces the Toxicity of Its Oligomers. Biomacromolecules, 2020, 21, 1112-1125.	5.4	59
5	Probing conformational changes of monomeric transthyretin with second derivative fluorescence. Scientific Reports, 2019, 9, 10988.	3.3	14
6	Identification of Novel 1,3,5-Triphenylbenzene Derivative Compounds as Inhibitors of Hen Lysozyme Amyloid Fibril Formation. International Journal of Molecular Sciences, 2019, 20, 5558.	4.1	6
7	Capturing AÎ ² 42 aggregation in the cell. Journal of Biological Chemistry, 2019, 294, 1488-1489.	3.4	1
8	Stability of an aggregation-prone partially folded state of human profilin-1 correlates with aggregation propensity. Journal of Biological Chemistry, 2018, 293, 10303-10313.	3.4	10
9	Direct Conversion of an Enzyme from Native-like to Amyloid-like Aggregates within Inclusion Bodies. Biophysical Journal, 2017, 112, 2540-2551.	0.5	9
10	From the Evolution of Protein Sequences Able to Resist Self-Assembly to the Prediction of Aggregation Propensity. International Review of Cell and Molecular Biology, 2017, 329, 1-47.	3.2	13
11	FRET studies of various conformational states adopted by transthyretin. Cellular and Molecular Life Sciences, 2017, 74, 3577-3598.	5.4	7
12	A single amino acid mutation affects elicitor and expansins-like activities of cerato-platanin, a non-catalytic fungal protein. PLoS ONE, 2017, 12, e0178337.	2.5	14
13	Molecular insights into cell toxicity of a novel familial amyloidogenic variant of β2â€microglobulin. Journal of Cellular and Molecular Medicine, 2016, 20, 1443-1456.	3.6	23
14	The Folding process of Human Profilin-1, a novel protein associated with familial amyotrophic lateral sclerosis. Scientific Reports, 2015, 5, 12332.	3.3	14
15	Mutations of Profilin-1 Associated with Amyotrophic Lateral Sclerosis Promote Aggregation Due to Structural Changes of Its Native State. ACS Chemical Biology, 2015, 10, 2553-2563.	3.4	23
16	Structure and Dynamics of the Integrin LFA-1 I-Domain in the Inactive State Underlie its Inside-Out/Outside-In Signaling and Allosteric Mechanisms. Structure, 2015, 23, 745-753.	3.3	15
17	NMR characterization of the conformational fluctuations of the human lymphocyte functionâ€associated antigenâ€1 lâ€domain. Protein Science, 2014, 23, 1596-1606.	7.6	8
18	A Complex Equilibrium among Partially Unfolded Conformations in Monomeric Transthyretin. Biochemistry, 2014, 53, 4381-4392.	2.5	12

#	Article	IF	CITATIONS
19	Edge strand engineering prevents nativeâ€like aggregation in <i><scp>S</scp>ulfolobusÂsolfataricus</i> acylphosphatase. FEBS Journal, 2014, 281, 4072-4084.	4.7	13
20	Amyloid fibril formation by a normally folded protein in the absence of denaturants and agitation. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2013, 20, 226-232.	3.0	6
21	Characterizing Intermolecular Interactions That Initiate Native-Like Protein Aggregation. Biophysical Journal, 2012, 102, 2595-2604.	0.5	26
22	Rapid oligomer formation of human muscle acylphosphatase induced by heparan sulfate. Nature Structural and Molecular Biology, 2012, 19, 547-554.	8.2	28
23	1H, 13C and 15N resonance assignments of human muscle acylphosphatase. Biomolecular NMR Assignments, 2012, 6, 27-29.	0.8	16
24	Protein Misfolded Oligomers: Experimental Approaches, Mechanism of Formation, and Structure-Toxicity Relationships. Chemistry and Biology, 2012, 19, 315-327.	6.0	239
25	Structural and Dynamics Characteristics of Acylphosphatase from Sulfolobus solfataricus in the Monomeric State and in the Initial Native-like Aggregates. Journal of Biological Chemistry, 2010, 285, 14689-14700.	3.4	23
26	"Nativeâ€like aggregation―of the acylphosphatase from <i>Sulfolobus solfataricus</i> and its biological implications. FEBS Letters, 2009, 583, 2630-2638.	2.8	32
27	A model for the aggregation of the acylphosphatase from Sulfolobus solfataricus in its native-like state. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1986-1996.	2.3	20
28	Biological function in a non-native partially folded state of a protein. EMBO Journal, 2008, 27, 1525-35.	7.8	32
29	The Folding Process of Acylphosphatase from Escherichia coli is Remarkably Accelerated by the Presence of a Disulfide Bond. Journal of Molecular Biology, 2008, 379, 1107-1118.	4.2	14
30	The Degree of Structural Protection at the Edge \hat{l}^2 -Strands Determines the Pathway of Amyloid Formation in Globular Proteins. Journal of the American Chemical Society, 2008, 130, 4295-4302.	13.7	26
31	Sequence and Structural Determinants of Amyloid Fibril Formation. Accounts of Chemical Research, 2006, 39, 620-627.	15.6	102
32	Assessing the role of aromatic residues in the amyloid aggregation of human muscle acylphosphatase. Protein Science, 2006, 15, 862-870.	7. 6	107
33	Exploring the Mechanism of Formation of Native-like and Precursor Amyloid Oligomers for the Native Acylphosphatase from Sulfolobus solfataricus. Structure, 2006, 14, 993-1001.	3.3	36
34	Preliminary characterization of two different crystal forms of acylphosphatase from the hyperthermophile archaeonSulfolobus solfataricus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 144-146.	0.7	3
35	Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins: Structure, Function and Bioinformatics, 2005, 62, 64-79.	2.6	43
36	Evidence for a Mechanism of Amyloid Formation Involving Molecular Reorganisation within Native-like Precursor Aggregates. Journal of Molecular Biology, 2005, 351, 910-922.	4.2	129

#	Article	IF	CITATIONS
37	Protein folding: Defining a "standard―set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Science, 2005, 14, 602-616.	7.6	207
38	Amyloid Formation of a Protein in the Absence of Initial Unfolding and Destabilization of the Native State. Biophysical Journal, 2005, 89, 4234-4244.	0.5	67
39	Studying the Folding Process of the Acylphosphatase fromSulfolobus solfataricus. A Comparative Analysis with Other Proteins from the Same Superfamilyâ€. Biochemistry, 2004, 43, 9116-9126.	2.5	19