Sara Macias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702689/publications.pdf

Version: 2024-02-01

687363 940533 18 827 13 16 citations h-index g-index papers 22 22 22 1335 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Sensing of transposable elements by the antiviral innate immune system. Rna, 2021, 27, 735-752.	3.5	36
2	ILF3 contributes to the establishment of the antiviral type I interferon program. Nucleic Acids Research, 2020, 48, 116-129.	14.5	20
3	Rapid Depletion of DIS3, EXOSC10, or XRN2 Reveals the Immediate Impact of Exoribonucleolysis on Nuclear RNA Metabolism and Transcriptional Control. Cell Reports, 2019, 26, 2779-2791.e5.	6.4	61
4	Crosstalk Between Mammalian Antiviral Pathways. Non-coding RNA, 2019, 5, 29.	2.6	11
5	MicroRNA-deficient mouse embryonic stem cells acquire a functional interferon response. ELife, 2019, 8, .	6.0	25
6	Differentiation of Mouse Embryonic Stem Cells to Neuronal Cells Using Hanging Droplets and Retinoic Acid. Bio-protocol, 2019, 9, e3417.	0.4	0
7	Purification of Microprocessor-Associated Factors. Methods in Molecular Biology, 2018, 1823, 51-62.	0.9	0
8	Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response. Cell Reports, 2018, 23, 3275-3285.	6.4	14
9	Genetic variation and RNA structure regulate microRNA biogenesis. Nature Communications, 2017, 8, 15114.	12.8	67
10	DGCR8 Acts as an Adaptor for the Exosome Complex to Degrade Double-Stranded Structured RNAs. Molecular Cell, 2015, 60, 873-885.	9.7	68
11	Control of mammalian retrotransposons by cellular RNA processing activities. Mobile Genetic Elements, 2014, 4, e28439.	1.8	31
12	The Microprocessor controls the activity of mammalian retrotransposons. Nature Structural and Molecular Biology, 2013, 20, 1173-1181.	8.2	105
13	Drosha Regulates Gene Expression Independently of RNA Cleavage Function. Cell Reports, 2013, 5, 1499-1510.	6.4	60
14	Cellular functions of the microprocessor. Biochemical Society Transactions, 2013, 41, 838-843.	3.4	40
15	DGCR8 HITS-CLIP reveals novel functions for the Microprocessor. Nature Structural and Molecular Biology, 2012, 19, 760-766.	8.2	200
16	<i>RPL30</i> regulation of splicing reveals distinct roles for Cbp80 in U1 and U2 snRNP cotranscriptional recruitment. Rna, 2010, 16, 2033-2041.	3 . 5	10
17	Hormonal Regulation of MicroRNA Biogenesis. Molecular Cell, 2009, 36, 172-173.	9.7	28
18	L30 Binds the Nascent RPL30 Transcript to Repress U2 snRNP Recruitment. Molecular Cell, 2008, 30, 732-742.	9.7	50