Kent Yagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2702306/publications.pdf

Version: 2024-02-01

66343 58581 6,941 85 42 82 citations h-index g-index papers 96 96 96 3293 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity, 2015, 32, 243001.	4.0	943
2	Theoretical physics implications of the binary black-hole mergers GW150914 and GW151226. Physical Review D, 2016, 94, .	4.7	495
3	I-Love-Q relations in neutron stars and their applications to astrophysics, gravitational waves, and fundamental physics. Physical Review D, 2013, 88, .	4.7	333
4	I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars. Science, 2013, 341, 365-368.	12.6	325
5	Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Physical Review D, $2011,83$, .	4.7	284
6	Approximate universal relations for neutron stars and quark stars. Physics Reports, 2017, 681, 1-72.	25.6	242
7	Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown. General Relativity and Gravitation, 2018, 50, 1.	2.0	216
8	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
9	Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars. Physical Review D, 2018, 97, .	4.7	192
10	Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger. General Relativity and Gravitation, 2018, 50, 1.	2.0	187
11	Slowly rotating black holes in dynamical Chern-Simons gravity: Deformation quadratic in the spin. Physical Review D, 2012, 86, .	4.7	166
12	Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Physical Review D, 2014, 89, .	4.7	161
13	Current status of space gravitational wave antenna DECIGO and B-DECIGO. Progress of Theoretical and Experimental Physics, 2021, 2021, .	6.6	150
14	Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity. Physical Review D, 2012, 85, .	4.7	145
15	Strong Binary Pulsar Constraints on Lorentz Violation in Gravity. Physical Review Letters, 2014, 112, 161101.	7.8	128
16	Effective no-hair relations for neutron stars and quark stars: Relativistic results. Physical Review D, 2014, 89, .	4.7	101
17	Challenging the presence of scalar charge and dipolar radiation in binary pulsars. Physical Review D, 2016, 93, .	4.7	90
18	New constraint on scalar Gauss-Bonnet gravity and a possible explanation for the excess of the orbital decay rate in a low-mass x-ray binary. Physical Review D, 2012, 86, .	4.7	87

#	Article	IF	Citations
19	Isolated and binary neutron stars in dynamical Chern-Simons gravity. Physical Review D, 2013, 87, .	4.7	87
20	Gravitational Waves from Quasicircular Black-Hole Binaries in Dynamical Chern-Simons Gravity. Physical Review Letters, 2012, 109, 251105.	7.8	82
21	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	26.7	82
22	Black Hole Spectroscopy with Coherent Mode Stacking. Physical Review Letters, 2017, 118, 161101.	7.8	81
23	Binary Love relations. Classical and Quantum Gravity, 2016, 33, 13LT01.	4.0	79
24	Constraining alternative theories of gravity by gravitational waves from precessing eccentric compact binaries with LISA. Physical Review D, $2010,81,\ldots$	4.7	77
25	Multipole Love relations. Physical Review D, 2014, 89, .	4.7	76
26	Constraining nuclear matter parameters with GW170817. Physical Review D, 2019, 99, .	4.7	70
27	Cosmology with space-based gravitational-wave detectors: Dark energy and primordial gravitational waves. Physical Review D, 2012, 85, .	4.7	69
28	Parametrized post-Einsteinian gravitational waveforms in various modified theories of gravity. Physical Review D, 2018, 98, .	4.7	62
29	Why I-Love-Q: Explaining why universality emerges in compact objects. Physical Review D, 2014, 90, .	4.7	60
30	Gravitational wave spectroscopy of binary neutron star merger remnants with mode stacking. Physical Review D, 2018, 97, .	4.7	59
31	Probing the size of extra dimensions with gravitational wave astronomy. Physical Review D, 2011, 83, .	4.7	52
32	THREE-HAIR RELATIONS FOR ROTATING STARS: NONRELATIVISTIC LIMIT. Astrophysical Journal, 2014, 788, 15.	4.5	52
33	Probing the internal composition of neutron stars with gravitational waves. Physical Review D, 2015, 92, .	4.7	51
34	SCIENTIFIC POTENTIAL OF DECIGO PATHFINDER AND TESTING GR WITH SPACE-BORNE GRAVITATIONAL WAVE INTERFEROMETERS. International Journal of Modern Physics D, 2013, 22, 1341013.	2.1	50
35	Approximate universal relations among tidal parameters for neutron star binaries. Classical and Quantum Gravity, 2017, 34, 015006.	4.0	49
36	Equation-of-state insensitive relations after GW170817. Physical Review D, 2019, 99, .	4.7	47

#	Article	IF	CITATIONS
37	Gravitation-Wave Emission in Shift-Symmetric Horndeski Theories. Physical Review Letters, 2015, 115, 211105.	7.8	43
38	Publisher's Note: Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations [Phys. Rev. D 89 , 084067 (2014)]. Physical Review D, 2014, 90, .	4.7	42
39	Parametrized and inspiral-merger-ringdown consistency tests of gravity with multiband gravitational wave observations. Physical Review D, 2020, 101, .	4.7	39
40	Multi-band gravitational wave tests of general relativity. Classical and Quantum Gravity, 2020, 37, 02LT01.	4.0	38
41	Projected constraints on Lorentz-violating gravity with gravitational waves. Physical Review D, 2015, 91, .	4.7	36
42	Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries. Physical Review D, 2018, 97, .	4.7	33
43	Asymptotically flat, parametrized black hole metric preserving Kerr symmetries. Physical Review D, 2020, 101, .	4.7	33
44	Constraints on Einstein-dilation-Gauss-Bonnet gravity from black hole-neutron star gravitational wave events. Physical Review D, 2022, 105, .	4.7	32
45	Testing gravity with gravitational waves from binary black hole mergers: Contributions from amplitude corrections. Physical Review D, 2019, 100, .	4.7	28
46	Gravitational waves from the quasicircular inspiral of compact binaries in Einstein-aether theory. Physical Review D, 2020, 101, .	4.7	27
47	Improved analytic modeling of neutron star interiors. Physical Review D, 2019, 99, .	4.7	24
48	Analytic I-Love-C relations for realistic neutron stars. Physical Review D, 2020, 101, .	4.7	24
49	Future prospects for probing scalar–tensor theories with gravitational waves from mixed binaries. Classical and Quantum Gravity, 2020, 37, 065008.	4.0	24
50	Brans-Dicke theory in Bondi-Sachs form: Asymptotically flat solutions, asymptotic symmetries, and gravitational-wave memory effects. Physical Review D, 2021, 103, .	4.7	24
51	The effect of mission duration on LISA science objectives. General Relativity and Gravitation, 2022, 54, 3.	2.0	24
52	Improved universality in the neutron star three-hair relations. Physical Review D, 2015, 92, .	4.7	23
53	Future prospects for constraining nuclear matter parameters with gravitational waves. Physical Review D, 2019, 100, .	4.7	23
54	Eikonal quasinormal modes of black holes beyond general relativity. III. Scalar Gauss-Bonnet gravity. Physical Review D, 2021, 104, .	4.7	22

#	Article	IF	CITATIONS
55	I-Love-Q relations for neutron stars in dynamical Chern Simons gravity. Classical and Quantum Gravity, 2018, 35, 025009.	4.0	21
56	Cosmology with Love: Measuring the Hubble constant using neutron star universal relations. Physical Review D, 2021, 104, .	4.7	20
57	Probing beyond-Kerr spacetimes with inspiral-ringdown corrections to gravitational waves. Physical Review D, 2020, 101, .	4.7	18
58	Probing compactified extra dimensions with gravitational waves. Physical Review D, 2021, 103, .	4.7	18
59	New binary pulsar constraints on Einstein- \tilde{A}^{\dagger}_{l} ther theory after GW170817. Classical and Quantum Gravity, 2021, 38, 195003.	4.0	18
60	Gravitational-wave memory effects in Brans-Dicke theory: Waveforms and effects in the post-Newtonian approximation. Physical Review D, 2021, 104 , .	4.7	18
61	Probing Einstein-dilaton Gauss-Bonnet gravity with the inspiral and ringdown of gravitational waves. Physical Review D, 2020, 101, .	4.7	17
62	Can the slow-rotation approximation be used in electromagnetic observations of black holes?. Classical and Quantum Gravity, 2016, 33, 105006.	4.0	16
63	Testing general relativity with black hole-pulsar binaries. Physical Review D, 2018, 98, .	4.7	16
64	Probing string-inspired gravity with the inspiral–merger–ringdown consistency tests of gravitational waves. Classical and Quantum Gravity, 2020, 37, 215007.	4.0	16
65	Probing hybrid stars with gravitational waves via interfacial modes. Physical Review D, 2021, 103, .	4.7	15
66	Tidal deformabilities of neutron stars in scalar-Gauss-Bonnet gravity and their applications to multimessenger tests of gravity. Physical Review D, 2021, 104 , .	4.7	15
67	The gravitational wave stress–energy (pseudo)-tensor in modified gravity. Classical and Quantum Gravity, 2018, 35, 055011.	4.0	14
68	Probing massive scalar fields from a pulsar in a stellar triple system. Classical and Quantum Gravity, 2020, 37, 145008.	4.0	12
69	Surface of rapidly-rotating neutron stars: Implications to neutron star parameter estimation. Physical Review D, 2021, 103, .	4.7	11
70	Neutron stars in scalar-tensor theories: Analytic scalar charges and universal relations. Physical Review D, 2021, 104, .	4.7	11
71	Measuring individual masses of binary white dwarfs with space-based gravitational-wave interferometers. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L52-L56.	3.3	11
72	Probing massive scalar and vector fields with binary pulsars. Physical Review D, 2020, 102, .	4.7	9

#	Article	IF	Citations
73	Probing modified gravitational-wave propagation through tidal measurements of binary neutron star mergers. Physical Review D, 2021, 103, .	4.7	9
74	Parameter estimation for tests of general relativity with the astrophysical stochastic gravitational wave background. Physical Review D, 2020, 102 , .	4.7	8
75	Probing noncommutative gravity with gravitational wave and binary pulsar observations. Physical Review D, 2020, 102, .	4.7	8
76	Gravitational-wave and X-ray probes of the neutron star equation of state. Nature Reviews Physics, 2022, 4, 237-246.	26.6	8
77	Parameterized and Consistency Tests of Gravity with GravitationalWaves: Current and Future. Proceedings (mdpi), 2019, 17, 5.	0.2	7
78	l–Love–Q relations for realistic white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 492, 978-992.	4.4	7
79	Testing the Formation Scenarios of Binary Neutron Star Systems with Measurements of the Neutron Star Moment of Inertia. Astrophysical Journal, 2018, 856, 19.	4.5	6
80	Testing General Relativity with Gravitational Waves. , 2021, , 1-33.		5
81	Rotating black holes in valid vector-tensor theories after GW170817. Physical Review D, 2020, 102, .	4.7	2
82	Relativistic astrophysics at GR20. General Relativity and Gravitation, 2014, 46, 1.	2.0	1
83	Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity. , 0, .		1
84	BINARY INSPIRAL IN QUADRATIC GRAVITY. , 2015, , .		0
85	Testing General Relativity with Gravitational Waves. , 2022, , 1591-1623.		O