Steinar Raaen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270226/publications.pdf

Version: 2024-02-01

		257450	3	345221
103	1,888	24		36
papers	citations	h-index		g-index
103	103	103		1826
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	The Effect of Substrate Treatment on the Properties of TiAlSiYN/CrN Nanocomposite Coatings. Surfaces and Interfaces, 2022, 30, 101902.	3.0	3
2	Physicochemical and Biological Evaluation of Chitosan-Coated Magnesium-Doped Hydroxyapatite Composite Layers Obtained by Vacuum Deposition. Coatings, 2022, 12, 702.	2.6	12
3	Influence of Elemental Carbon (EC) Coating Covering nc-(Ti,Mo)C Particles on the Microstructure and Properties of Titanium Matrix Composites Prepared by Reactive Spark Plasma Sintering. Materials, 2021, 14, 231.	2.9	6
4	The Influence of Nanometals, Dispersed in the Electrophoretic Nanohydroxyapatite Coatings on the Ti13Zr13Nb Alloy, on Their Morphology and Mechanical Properties. Materials, 2021, 14, 1638.	2.9	6
5	Investigation of Spin Coating Cerium-Doped Hydroxyapatite Thin Films with Antifungal Properties. Coatings, 2021, 11, 464.	2.6	19
6	Adsorption of Carbon Dioxide on Mono-Layer Thick Oxidized Samarium Films on Ni(100). Nanomaterials, 2021, 11, 2064.	4.1	3
7	Enhanced visible light photoelectrochemical water splitting using nanotubular FeOx-TiO2 annealed at different temperatures. Journal of Power Sources, 2021, 507, 230274.	7.8	8
8	Plasma electrolytic oxidation as an effective tool for production of copper incorporated bacteriostatic coatings on Ti-15Mo alloy. Applied Surface Science, 2021, 563, 150284.	6.1	10
9	Metal Ions Supported Porous Coatings by Using AC Plasma Electrolytic Oxidation Processing. Materials, 2020, 13, 3838.	2.9	5
10	Antimicrobial Properties of Samarium Doped Hydroxyapatite Suspensions and Coatings. Coatings, 2020, 10, 1124.	2.6	17
11	Spontaneous formation of an ordered interstratification upon Ni-exchange of Na-fluorohectorite. Applied Clay Science, 2020, 198, 105831.	5.2	7
12	Development of Cerium-Doped Hydroxyapatite Coatings with Antimicrobial Properties for Biomedical Applications. Coatings, 2020, 10, 516.	2.6	28
13	Electrochemical modification of the Ti-15Mo alloy surface in solutions containing ZnO and Zn3(PO4)2 particles. Materials Science and Engineering C, 2020, 115, 111098.	7.3	29
14	Phosphate Coatings Enriched with Copper on Titanium Substrate Fabricated Via DC-PEO Process. Materials, 2020, 13, 1295.	2.9	7
15	Porous Coatings Containing Copper and Phosphorus Obtained by Plasma Electrolytic Oxidation of Titanium. Materials, 2020, 13, 828.	2.9	11
16	Effects of Oxygen Mobility in La–Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation. ACS Catalysis, 2020, 10, 3707-3719.	11.2	132
17	Characterisation of porous coatings formed on titanium under AC plasma electrolytic oxidation. MATEC Web of Conferences, 2018, 178, 03008.	0.2	2
18	Novel Porous Phosphorus–Calcium–Magnesium Coatings on Titanium with Copper or Zinc Obtained by DC Plasma Electrolytic Oxidation: Fabrication and Characterization. Materials, 2018, 11, 1680.	2.9	22

#	Article	IF	CITATIONS
19	Development of Porous Coatings Enriched with Magnesium and Zinc Obtained by DC Plasma Electrolytic Oxidation. Micromachines, 2018, 9, 332.	2.9	12
20	Characterization of Porous Phosphate Coatings Enriched with Magnesium or Zinc on CP Titanium Grade 2 under DC Plasma Electrolytic Oxidation. Metals, 2018, 8, 112.	2.3	17
21	Characterization of Porous Phosphate Coatings Enriched with Calcium, Magnesium, Zinc and Copper Created on CP Titanium Grade 2 by Plasma Electrolytic Oxidation. Metals, 2018, 8, 411.	2.3	16
22	Characterisation of porous coatings formed on titanium under DC plasma electrolytic oxidation. MATEC Web of Conferences, 2018, 178, 03009.	0.2	1
23	Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by plasma electrolytic oxidation. International Journal of Advanced Manufacturing Technology, 2017, 89, 2953-2965.	3.0	27
24	GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation. Surface and Interface Analysis, 2017, 49, 303-315.	1.8	30
25	Characterisation of Calcium- and Phosphorus-Enriched Porous Coatings on CP Titanium Grade 2 Fabricated by Plasma Electrolytic Oxidation. Metals, 2017, 7, 354.	2.3	17
26	XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation. Journal of Spectroscopy, 2016, 2016, 1-7.	1.3	32
27	SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials, 2016, 9, 318.	2.9	60
28	Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by plasma electrolytic oxidation: characterisation and modelling. International Journal of Advanced Manufacturing Technology, 2016, 87, 3497-3512.	3.0	35
29	Development of plasma electrolytic oxidation for improved Ti6Al4V biomaterial surface properties. International Journal of Advanced Manufacturing Technology, 2016, 85, 2425-2437.	3.0	43
30	High temperature hydrogenation of Ti–V alloys: The effect of cycling and carbon monoxide on the bulk and surface properties. International Journal of Hydrogen Energy, 2016, 41, 1699-1710.	7.1	12
31	Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission. Journal of Applied Physics, $2015,118,.$	2.5	2
32	Temperature programmed desorption of CO from CO pre-covered Mo(1 1 0). Applied Surface Science, 2015, 349, 17-20.	6.1	2
33	Formation of dendritic Pt nanostructures on graphite. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 031803.	1.2	2
34	Preparation of stable cubic LaFeO3 nanoparticles using carbon nanotubes as templates. Journal of Materials Chemistry A, 2013, 1, 7006.	10.3	24
35	The influence of potassium doping on hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Applied Surface Science, 2013, 270, 364-369.	6.1	19
36	Towards a highly-efficient fuel-cell catalyst: optimization of Pt particle size, supports and surface-oxygen group concentration. Physical Chemistry Chemical Physics, 2013, 15, 3803.	2.8	46

#	Article	IF	CITATIONS
37	Ru@Pt core–shell nanoparticles for methanol fuel cell catalyst: Control and effects of shell composition. International Journal of Hydrogen Energy, 2013, 38, 16631-16641.	7.1	64
38	Characterization of Passive Film Formed on AISI 316L Stainless Steel after Magnetoelectropolishing in a Broad Range of Polarization Parameters. Steel Research International, 2012, 83, 910-918.	1.8	30
39	Size effect on thermal desorption of CO from Pt nanostructures on graphite. Journal of Applied Physics, 2011, 109, 123503.	2.5	3
40	Possible influence of electrostatics in molecular bonding at supported metal nanoparticles. Philosophical Magazine Letters, 2010, 90, 193-199.	1.2	1
41	Importance of Oxygen-Free Edge and Defect Sites for the Immobilization of Colloidal Pt Oxide Particles with Implications for the Preparation of CNF-Supported Catalysts. Journal of Physical Chemistry C, 2010, 114, 1752-1762.	3.1	53
42	Initial oxidation of pure and K doped NiTi shape memory alloys. Journal of Applied Physics, 2009, 105, .	2.5	13
43	Surface alloying and mixed valence in thin layers of Ce and Pd on Ru(0001). Surface Science, 2009, 603, 197-202.	1.9	6
44	Minute synthesis of extremely stable gold nanoparticles. Nanotechnology, 2009, 20, 505606.	2.6	95
45	Hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Applied Surface Science, 2008, 255, 1906-1910.	6.1	24
46	Oxidation of thin Ce layers on Rh(110). Thin Solid Films, 2008, 517, 805-810.	1.8	8
46	Oxidation of thin Ce layers on Rh(110). Thin Solid Films, 2008, 517, 805-810. Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235.	1.8 9.4	8
	Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques.		
47	Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235.	9.4	14
47	Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235. Deposition of Au colloids on plasmachemically modified carbon nanofibers. Carbon, 2008, 46, 759-765. Carbon Cones - a Structure with Unique Properties. Materials Research Society Symposia Proceedings,	9.4	21
48	Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235. Deposition of Au colloids on plasmachemically modified carbon nanofibers. Carbon, 2008, 46, 759-765. Carbon Cones - a Structure with Unique Properties. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	9.4 10.3 0.1	14 21 2
47 48 49 50	Hydrophobic monolayer preparation by Langmuirâé"Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235. Deposition of Au colloids on plasmachemically modified carbon nanofibers. Carbon, 2008, 46, 759-765. Carbon Cones - a Structure with Unique Properties. Materials Research Society Symposia Proceedings, 2007, 1057, 1. Surface alloy formation after deposition of Ce on Rh(110). Surface Science, 2007, 601, 2917-2923.	9.4 10.3 0.1 1.9	14 21 2 6
47 48 49 50	Hydrophobic monolayer preparation by Langmuir–Blodgett and chemical adsorption techniques. Journal of Colloid and Interface Science, 2008, 325, 228-235. Deposition of Au colloids on plasmachemically modified carbon nanofibers. Carbon, 2008, 46, 759-765. Carbon Cones - a Structure with Unique Properties. Materials Research Society Symposia Proceedings, 2007, 1057, 1. Surface alloy formation after deposition of Ce on Rh(110). Surface Science, 2007, 601, 2917-2923. Valence variations of Sm on polycrystalline Ag. Surface Science, 2006, 600, 1155-1159.	9.4 10.3 0.1 1.9	14 21 2 6

#	Article	IF	Citations
55	Study of CO adsorption on La–Rh(100) surface alloys. Surface Science, 2002, 497, 254-268.	1.9	6
56	Investigation of the La–Rh(100) surface alloy. Surface Science, 2001, 490, 1-12.	1.9	11
57	Molecular vibrations in core-ionised CO adsorbed on Co(0001) and Rh(100). Surface Science, 2001, 492, 152-160.	1.9	11
58	Electronic structure of the La–Pt(111) surface alloy. Surface Science, 2000, 448, 179-186.	1.9	24
59	Formation of and CO adsorption on an inert La-Pt(111) surface alloy. Physical Review B, 1999, 59, 15935-15941.	3.2	28
60	Growth and alloy formation studied by photoelectron spectroscopy and STM. Surface Science, 1999, 425, 57-67.	1.9	26
61	CO and O2 adsorption on the Re/Pt(111) surface studied by photoemission and thermal desorption Surface Science, 1999, 440, 290-300.	1.9	38
62	Valence variations in the monolayer regime of Sm on the Nb(110) surface. Surface Science, 1998, 410, 344-350.	1.9	14
63	The surface core-level shift of the Nb(110) surface. Philosophical Magazine Letters, 1998, 78, 271-276.	1.2	3
64	Photoemission study of Sm on Ta(110): Valence states in the initial growth phase. Physical Review B, 1997, 55, 1391-1394.	3.2	19
65	Photoelectron spectroscopy and scanning tunneling microscopy studies of the initial growth of the Sm-on-Pt(100) interface. Physical Review B, 1996, 53, 16587-16594.	3.2	17
66	Initial oxidation of the Sc-on-Al(111) system, as studied by photoelectron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1996, 77, 25-31.	1.7	3
67	Work function variations and oxygen conduction in a Pt ZrO2(Y2O3) Pt solid electrolyte cell. Applied Surface Science, 1996, 93, 199-203.	6.1	15
68	Oxidation of metal surfaces at 15 K: The quantum nature of oxidation. Physical Review B, 1995, 52, 11339-11342.	3.2	6
69	The surface core-level shift of the Rh (100) single-crystal surface. Journal of Physics Condensed Matter, 1994, 6, L7-L10.	1.8	14
70	Photoemission study of the Ce/Rh(100) overlayer system: Hybridization offanddstates. Physical Review B, 1994, 50, 1976-1979.	3.2	9
71	Photoemission study of solid state reaction and initial oxidation of the Ce/A1(111) system. Surface Science, 1994, 303, 114-124.	1.9	6
72	A photoemission investigation of deposition rate dependent growth of europium on silver films. Physica B: Condensed Matter, 1993, 183, 415-418.	2.7	1

#	Article	IF	Citations
73	Photoemission studies of Eu-Rh and Eu-Pd interfaces. Journal of Physics Condensed Matter, 1992, 4, 4213-4220.	1.8	3
74	An X-ray photoemission study of Ce-Rh, Ce-Pd and Ce-Ag interfaces. Journal of Physics Condensed Matter, 1992, 4, 8021-8028.	1.8	17
75	K promoted oxidation of Al and Ta. Surface Science, 1991, 250, 51-58.	1.9	15
76	Oxygen K near-edge-structure for thin Ce oxide films. Solid State Communications, 1991, 77, 731-734.	1.9	9
77	Correspondence between the work function and overlayer core-level shifts in oxidized cesium on carbon. Physical Review B, 1991, 44, 3373-3376.	3.2	7
78	4p-4d fano-like resonance in rhodium. Journal of Electron Spectroscopy and Related Phenomena, 1990, 50, 195-200.	1.7	5
79	Resonant photoemission from tantalum in the vicinity of the 5p excitation threshold. Physica B: Condensed Matter, 1990, 162, 172-175.	2.7	5
80	Solid state reaction at room temperature of cerium and gold in evaporated films. Solid State Communications, 1990, 73, 389-392.	1.9	17
81	Valence states of Eu/Pd and Eu/Ta interfaces. Journal of Physics Condensed Matter, 1990, 2, 7679-7686.	1.8	6
82	Praseodymium-overlayer-induced enhancement in oxide growth on aluminum and tantalum. Physical Review B, 1990, 41, 12270-12273.	3.2	9
83	Referencing core levels in photoelectron spectroscopy. Physical Review B, 1990, 42, 9151-9154.	3.2	11
84	Enhanced oxidation of aluminum; effects of thin cerium overlayers. Physica Scripta, 1990, 41, 1001-1004.	2.5	9
85	Correlation effects in the photoemission/B.I.S. from narrow band metals. Physica Scripta, 1989, 40, 315-320.	2.5	0
86	Effects of thin cerium overlayers on the oxidation of tantalum and aluminium. Surface Science, 1989, 222, 499-516.	1.9	42
87	Photoemission study of formation and oxidation of a cerium-copper interface. Physical Review B, 1989, 40, 7969-7972.	3.2	27
88	Growth of gold monolayers on polycrystalline tantalum. Solid State Communications, 1988, 65, 1605-1608.	1.9	2
89	Oxidation of transition metal-rare earth interfaces: an XPS study. Physica Scripta, 1988, 37, 778-781.	2.5	10
90	Observation of bulk tantalum oxide formation below 35 K. Physical Review B, 1987, 35, 3740-3744.	3.2	6

#	Article	IF	CITATIONS
91	Absence of two-electron resonances in valence-band photoemission from Cr, Mn, Fe, and Co. Physical Review B, 1987, 36, 887-890.	3.2	50
92	Correlation effects in 3d transition metals: Presence of a two-hole core-satellite in cobalt. Solid State Communications, 1986, 60, 991-993.	1.9	20
93	Final-state mixing and charge neutralization by tunneling: A photoemission study of metal–rare-gas systems. Physical Review B, 1986, 33, 4360-4363.	3.2	4
94	Core-level and valence-band photoemission study of granular platinum films. Physical Review B, 1986, 33, 4345-4348.	3.2	25
95	Observation of a first-order phase transition in Xe/Ta(110) by photoelectron spectroscopy. Physical Review B, 1985, 31, 623-626.	3.2	11
96	Hybridization between4fand conduction electrons and saturation of mixed valence in cerium-based systems. Physical Review B, 1985, 32, 4241-4244.	3.2	6
97	Evolution of the Pt conduction band in a solid Xe layer. Physical Review B, 1985, 32, 4289-4291.	3.2	23
98	Ce valence variation in intermetallic alloys:LIIIabsorption spectroscopy results. Physical Review B, 1984, 30, 4164-4169.	3.2	51
99	LIIIabsorption studies of the mixed valence systems Ce(Rh1â^'xRux)2and Ce(Rh1â^'yPty)2. Journal of Applied Physics, 1984, 55, 1966-1968.	2.5	20
100	Mixed valence in CeNi5; effects of dilution and chemical pressure. Solid State Communications, 1983, 48, 199-202.	1.9	20
101	LIIIx-ray absorption in the light rare earths: Ground-state versus final-state effects. Physical Review B, 1983, 27, 5139-5141.	3.2	20
102	Surface versus shake-down effects in the deep-core photoemission of Sm- and Eu-based intermetallics. Physical Review B, 1983, 27, 6469-6471.	3.2	11
103	Anomalous saturation of mixed valence in cerium-based systems as studied by x-ray absorption. Physical Review B, 1983, 28, 3556-3558.	3.2	58