Wen-Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2701739/publications.pdf

Version: 2024-02-01

275 papers

15,002 citations

23567 58 h-index 21540 114 g-index

282 all docs 282 docs citations

times ranked

282

10425 citing authors

#	Article	IF	CITATIONS
1	Observation of Shortâ€Period Helical Spin Order and Magnetic Transition in a Nonchiral Centrosymmetric Helimagnet. Advanced Functional Materials, 2022, 32, .	14.9	4
2	Observation of magnetic domain patterns with tilted uniaxial anisotropy using a single-spin magnetometer. Physical Review B, 2022, 105, .	3.2	1
3	Angular-dependent magnetoresistance in Cr _{1/3} NbS ₂ single crystals. Applied Physics Letters, 2022, 120, 112408.	3.3	2
4	Elastic criterion for shear-banding instability in amorphous solids. Physical Review E, 2022, 105, 045003.	2.1	8
5	Tuning the structural, magnetic, and transport properties of Mn3Ga alloys. Journal of Applied Physics, 2022, 131, .	2.5	6
6	Spin excitations and spin wave gap in the ferromagnetic Weyl semimetal Co3Sn2S2. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	5.1	35
7	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>A</mml:mi></mml:mrow> <mml:mrow><mml:mi>B</mml:mi></mml:mrow> <td></td> <td>12</td>		12
8	site ferminaphetic orderings in the duadruple perovskite oxide kimikmating ximlns:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><m< td=""><td>i>Cu3.2</td><td>nl:mi><mml:r 6</mml:r </td></m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub>	i>Cu3.2	nl:mi> <mml:r 6</mml:r
9	Ferromagnetism in two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Fe</mml:mi>Fe<mml:mrow><mml:msub><mml:msub><mml:mi>Fe</mml:mi>Fe<mml:mrow><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msu< td=""><td>1<i>8</i>32/mml</td><td>:m8></td></mml:msu<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:math>	1 <i>8</i> 32/mml	:m 8 >
10	Large anomalous Hall angle accompanying the sign change of anomalous Hall conductance in the topological half-Heusler compound HoPtBi. Physical Review B, 2021, 103, .	3.2	7
11	Unusually thick shear-softening surface of micrometer-size metallic glasses. Innovation(China), 2021, 2, 100106.	9.1	7
12	Design of Mn–Mn distance for tunable spontaneous exchange bias in Heusler alloys. Intermetallics, 2021, 132, 107170.	3.9	7
13	Planar topological Hall effect in a hexagonal ferromagnetic Fe5Sn3 single crystal. Applied Physics Letters, 2021, 118, 182407.	3.3	3
14	Modulation of Weyl semimetal state in half-Heusler GdPtBi enabled by hydrostatic pressure. New Journal of Physics, 2021, 23, 083041.	2.9	1
15	Magnetic anisotropy and critical behavior of the quaternary van der Waals ferromagnetic material Cr0.96Ge0.17Si0.82Te3. Journal of Physics Condensed Matter, 2021, 33, 425803.	1.8	0
16	Probe of skyrmion phases and dynamics in MnSi via the magnetoelectric effect in a composite configuration. Physical Review B, 2021, 104, .	3.2	6
17	Observation of large exchange bias above room temperature in antiferromagnetic hexagonal Mn3Ga. Journal of Magnetism and Magnetic Materials, 2021, 536, 168109.	2.3	7
18	Large anomalous Hall angle in a topological semimetal candidate TbPtBi. Applied Physics Letters, 2021, 118, .	3.3	15

#	Article	IF	Citations
19	Observation of structural distortion and topological Hall effect in noncollinear antiferromagnetic hexagonal Mn3Ga magnets. Applied Physics Letters, 2021, 119, .	3.3	7
20	Magnetic-field-induced transformation and strain in polycrystalline FeMnGa ferromagnetic shape memory alloys with high cold-workability. Applied Physics Letters, 2021, 119, .	3.3	4
21	Artificial synaptic device and neural network based on the FeGa/PMN-PT/FeGa memtranstor. Applied Physics Letters, 2021, 119, 192902.	3.3	5
22	Coherent spin rotation-induced zero thermal expansion in MnCoSi-based spiral magnets. NPG Asia Materials, 2021, 13, .	7.9	9
23	Thermodynamics and Kinetics Synergy for Controlled Synthesis of 2D van der Waals Single-Crystal NbSe ₂ via Modified Chemical Vapor Transport. Crystal Growth and Design, 2020, 20, 706-712.	3.0	5
24	Observation of Magnetic Skyrmion Bubbles in a van der Waals Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2020, 20, 868-873.	9.1	198
25	Currentâ€Induced Helicity Reversal of a Single Skyrmionic Bubble Chain in a Nanostructured Frustrated Magnet. Advanced Materials, 2020, 32, e1904815.	21.0	47
26	Invariance of the relation between $\langle i \rangle \hat{l} \pm \langle i \rangle$ relaxation and $\langle i \rangle \hat{l}^2 \langle i \rangle$ relaxation in metallic glasses to variations of pressure and temperature. Physical Review B, 2020, 102, .	3.2	11
27	Many-Body Resonance in a Correlated Topological Kagome Antiferromagnet. Physical Review Letters, 2020, 125, 046401.	7.8	24
28	Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure. Nature Communications, 2020, 11, 3577.	12.8	117
29	A facile strategy to produce monatomic tantalum metallic glass. Applied Physics Letters, 2020, 117, .	3.3	3
30	Nonmonotonous atomic motions in metallic glasses. Physical Review B, 2020, 102, .	3.2	10
31	Local Disorder-Induced Elevation of Intrinsic Anomalous Hall Conductance in an Electron-Doped Magnetic Weyl Semimetal. Physical Review Letters, 2020, 125, 086602.	7.8	45
32	Localized spin-orbit polaron in magnetic Weyl semimetal Co3Sn2S2. Nature Communications, 2020, 11, 5613.	12.8	53
33	Large anisotropic topological Hall effect in a hexagonal non-collinear magnet Fe5Sn3. Applied Physics Letters, 2020, 116, .	3.3	23
34	Topological electronic state and anisotropic Fermi surface in half-Heusler GdPtBi. Journal of Physics Condensed Matter, 2020, 32, 355707.	1.8	5
35	Chiral-anomaly induced large negative magnetoresistance and nontrivial π-Berry phase in half-Heusler compounds RPtBi (R=Tb, Ho, and Er). Applied Physics Letters, 2020, 116, .	3.3	12
36	Ferromagnetic martensitic transformation and large magnetocaloric effect in Ni35Co15â^' <i>×</i> Fe <i>×</i> Mn35Ti15 (<i>×x </i> = 2, 4, 6, 8) alloys. Journal of Applied Physics, 2020,	1 2 75, .	17

#	Article	IF	CITATIONS
37	Reversible and irreversible $\langle i \rangle \hat{l}^2 \langle i \rangle$ -relaxations in metallic glasses. Physical Review B, 2020, 101, .	3.2	19
38	Thermally induced generation and annihilation of magnetic chiral skyrmion bubbles and achiral bubbles in Mn–Ni–Ga magnets. Applied Physics Letters, 2020, 116, .	3.3	8
39	Single-spin scanning magnetic microscopy with radial basis function reconstruction algorithm. Applied Physics Letters, 2020, 116 , .	3.3	5
40	Metallic Glacial Glass Formation by a First-Order Liquid–Liquid Transition. Journal of Physical Chemistry Letters, 2020, 11, 6718-6723.	4.6	30
41	33% Giant Anomalous Hall Current Driven by Both Intrinsic and Extrinsic Contributions in Magnetic Weyl Semimetal Co ₃ Sn ₂ S ₂ . Advanced Functional Materials, 2020, 30, 2000830.	14.9	44
42	Current-driven skyrmionium in a frustrated magnetic system. Applied Physics Letters, 2020, 117, .	3.3	22
43	Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. Science Advances, 2020, 6, eaay1876.	10.3	20
44	Energy storage oscillation of metallic glass induced by high-intensity elastic stimulation. Applied Physics Letters, 2020, 116, .	3.3	13
45	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">F<mml:msub><mml:mi mathvariant="normal">e<mml:mn>5</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">S<mml:msub><mml:mi< td=""><td>3.2</td><td>18</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow>	3.2	18
46	mathyariant="normal">	3.3	16
47	10.1063/5.0012706.3., 2020, , .		O
48	Electric field gradients in 2H–NbSe ₂ : ⁹³ Nb NMR measurements and first-principles calculations. Journal of Physics Condensed Matter, 2020, 33, 045404.	1.8	1
49	Universal relationship of boson peak with Debye level and Debye-Waller factor in disordered materials. Physical Review Materials, 2020, 4, .	2.4	5
50	Simultaneous tuning of magnetocrystalline anisotropy and spin reorientation transition via Cu substitution in Mn-Ni-Ga magnets for nanoscale biskyrmion formation. Physical Review B, 2019, 100, .	3.2	12
51	Atomic configuration, unusual lattice constant change, and tunable ferromagnetism in all-d-metal Heusler alloys Fe2CrV-FeCr2V. Journal of Magnetism and Magnetic Materials, 2019, 492, 165661.	2.3	16
52	Angular dependence of the topological Hall effect in the uniaxial van der Waals ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi> Physical Review B, 2019, 100, .</mml:msub></mml:mrow></mml:math>	32/mml:	52 mn>
53	Ultrafast extreme rejuvenation of metallic glasses by shock compression. Science Advances, 2019, 5, eaaw6249.	10.3	66
54	Shear transformation zone analysis of anelastic relaxation of a metallic glass reveals distinct properties of \hat{l}_{\pm} and \hat{l}_{\pm}^{2} relaxations. Physical Review E, 2019, 100, 033001.	2.1	15

#	Article	IF	CITATIONS
55	An efficient scheme to tailor the magnetostructural transitions by staged quenching and cyclical ageing in hexagonal martensitic alloys. Acta Materialia, 2019, 174, 289-299.	7.9	33
56	Electronic behaviors during martensitic transformations in all- $\langle i \rangle d \langle j \rangle$ -metal Heusler alloys. Journal of Physics Condensed Matter, 2019, 31, 425401.	1.8	29
57	Large topological Hall effect in a geometrically frustrated kagome magnet Fe3Sn2. Applied Physics Letters, 2019, 114, .	3.3	68
58	Eigenstates of soft-mode vibrational excitations in thin-film metallic glasses. Physical Review B, 2019, 99, .	3.2	2
59	Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nature Communications, 2019, 10, 1966.	12.8	48
60	Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer. Physical Review Applied, 2019, 11, .	3.8	31
61	Phase Stability and Magnetic Properties of Mn3Z (Z = Al, Ga, In, Tl, Ge, Sn, Pb) Heusler Alloys. Applied Sciences (Switzerland), 2019, 9, 964.	2.5	11
62	Oriented 3D Magnetic Biskyrmions in MnNiGa Bulk Crystals. Advanced Materials, 2019, 31, e1900264.	21.0	23
63	Magnetic hard nanobubble: A possible magnetization structure behind the bi-skyrmion. Applied Physics Letters, 2019, 114, .	3.3	22
64	On the anisotropies of magnetization and electronic transport of magnetic Weyl semimetal Co3Sn2S2. Applied Physics Letters, 2019, 115, 212403.	3.3	31
65	Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Applied Physics Letters, 2019, 115, . Manipulating Spin Chirality of Magnetic Skyrmion Bubbles by In-Plane Reversed Magnetic Fields in	3.3	17
66	<pre><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo stretchy="false">(</mml:mo><mml:msub><mml:mi>Mn</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:m< pre=""></mml:m<></mml:mrow></mml:msub></mml:math></pre>	ɔ>ẩ* ⁸ <td>ıl:mo><mml:n< td=""></mml:n<></td>	ıl:mo> <mml:n< td=""></mml:n<>
67	Physical Review Applied, 2019, 12, . Manipulating the Topology of Nanoscale Skyrmion Bubbles by Spatially Geometric Confinement. ACS Nano, 2019, 13, 922-929.	14.6	43
68	Structural and magnetotransport properties of topological trivial LuNiBi single crystals. Journal of Alloys and Compounds, 2019, 784, 822-826.	5.5	7
69	<i>R</i> <ovl>3</ovl> <i>c</i> -type LnNiO ₃ (Ln = La, Ce, Nd, Pm, Gd, Tb, Dy, Ho, Er, Lu) half-metals with multiple Dirac cones: a potential class of advanced spintronic materials. IUCrJ, 2019, 6, 990-995.	2.2	13
70	Multiscale Relaxation Dynamics in Ultrathin Metallic Glass-Forming Films. Physical Review Letters, 2018, 120, 155501.	7.8	25
71	Ultrastable metallic glasses formed on cold substrates. Nature Communications, 2018, 9, 1389.	12.8	83
72	Intrinsic and extrinsic electrical and thermal transport of bulk black phosphorus. Physical Review B, 2018, 97, .	3.2	15

#	Article	IF	CITATIONS
73	Electronic Structures, Magnetic Properties and Half-Metallicity of Heusler Compounds Hf2VZ ($Z = Ga$,) Tj ETQq1 1 Magnetism, 2018, 31, 3063-3074.	. 0.784314 1.8	rgBT /Over 3
74	Multiple tuning of magnetic biskyrmions using <i>in situ</i> L-TEM in centrosymmetric MnNiGa alloy. Journal of Physics Condensed Matter, 2018, 30, 065803.	1.8	11
75	Weak antilocalization effect in exfoliated black phosphorus revealed by temperature- and angle-dependent magnetoconductivity. Journal of Physics Condensed Matter, 2018, 30, 085703.	1.8	5
76	Enhanced Stability of Black Phosphorus Fieldâ€Effect Transistors via Hydrogen Treatment. Advanced Electronic Materials, 2018, 4, 1700455.	5.1	19
77	Creation of Single Chain of Nanoscale Skyrmion Bubbles with Record-High Temperature Stability in a Geometrically Confined Nanostripe. Nano Letters, 2018, 18, 1274-1279.	9.1	62
78	Magnetic semiconductors based on quaternary Heusler compounds. Computational Materials Science, 2018, 150, 321-324.	3.0	20
79	Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field. Applied Physics Letters, 2018, 112, .	3.3	68
80	Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer. Journal of Applied Physics, 2018, 123, .	2.5	19
81	Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids. Physical Review Letters, 2018, 120, 125502.	7.8	24
82	Dynamic signature of orbital selective Mott transition in the metallic phase of VO ₂ . New Journal of Physics, 2018, 20, 073026.	2.9	8
83	Design of anti-site disorder for tunable spontaneous exchange bias: Mn-Ni-Al alloys as a case. Applied Physics Letters, 2018, 113, .	3.3	11
84	Stress relief by annealing under external stress in Fe-based metallic glasses. Journal of Applied Physics, 2018, 124, 165108.	2.5	9
85	Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass. Nature Communications, 2018, 9, 4414.	12.8	62
86	Vacancy mediated ionic mobility in a phonon glass material CuAgSe. Solid State Ionics, 2018, 326, 183-187.	2.7	6
87	Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet. Nature, 2018, 562, 91-95.	27.8	255
88	Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nature Physics, 2018, 14, 1125-1131.	16.7	876
89	Crystal-orientation dependence of magnetic domain structures in the skyrmion-hosting magnets MnNiGa. APL Materials, 2018, 6, 076101.	5.1	12
90	Large topological hall effect observed in tetragonal Mn2PtSn Heusler thin film. Applied Physics Letters, 2018, 113, 062406.	3.3	22

#	Article	IF	Citations
91	Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth. Physical Review Letters, 2017, 118, 016101.	7.8	41
92	Flexible amorphous metal films with high stability. Applied Physics Letters, 2017, 110, .	3.3	16
93	Angle-dependent magnetoresistance and quantum oscillations in high-mobility semimetal LuPtBi. Journal of Physics Condensed Matter, 2017, 29, 195501.	1.8	8
94	Large topological Hall effect in nonchiral hexagonal MnNiGa films. Applied Physics Letters, 2017, 110, .	3.3	21
95	Understanding the maximum dynamical heterogeneity during the unfreezing process in metallic glasses. Journal of Applied Physics, 2017, 121, .	2.5	13
96	Structural origin of fractional Stokes-Einstein relation in glass-forming liquids. Scientific Reports, 2017, 7, 39938.	3.3	27
97	Helium Nanobubbles Enhance Superelasticity and Retard Shear Localization in Small-Volume Shape Memory Alloy. Nano Letters, 2017, 17, 3725-3730.	9.1	24
98	Observation of Various and Spontaneous Magnetic Skyrmionic Bubbles at Room Temperature in a Frustrated Kagome Magnet with Uniaxial Magnetic Anisotropy. Advanced Materials, 2017, 29, 1701144.	21.0	189
99	Size effect on dynamics and glass transition in metallic liquids and glasses. Journal of Chemical Physics, 2017, 146, 224502.	3.0	15
100	Unusual energy state evolution in Ce-based metallic glass under high pressure. Journal of Applied Physics, 2017, 121, .	2.5	12
101	Transition from Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear Magnet Mn3Ga. Scientific Reports, 2017, 7, 515.	3.3	70
102	<i>In-situ</i> atomic force microscopy observation revealing gel-like plasticity on a metallic glass surface. Journal of Applied Physics, 2017, 121, .	2.5	13
103	Observation of weak antilocalization effect in high-quality ScNiBi single crystal. Journal of Applied Physics, 2017, 121, .	2.5	12
104	High stored energy of metallic glasses induced by high pressure. Applied Physics Letters, 2017, 110, .	3.3	40
105	Real-Space Observation of Nonvolatile Zero-Field Biskyrmion Lattice Generation in MnNiGa Magnet. Nano Letters, 2017, 17, 7075-7079.	9.1	64
106	Structural and dynamical characteristics of flow units in metallic glasses. Scientific Reports, 2017, 7, 11558.	3.3	7
107	Flexible strain sensors with high performance based on metallic glass thin film. Applied Physics Letters, 2017, 111, .	3.3	55
108	Half-metallicity of the bulk and (001) surface of NbFeCrAl and NbFeVGe Heusler compounds: a first-principles prediction. RSC Advances, 2017, 7, 31707-31713.	3.6	12

#	Article	IF	CITATIONS
109	The electronic and magnetic properties and topological Hall effect in hexagonal MnNiGa alloy films by varying Mn contents. Journal of Alloys and Compounds, 2017, 725, 1324-1329.	5.5	12
110	Generation of high-density biskyrmions by electric current. Npj Quantum Materials, 2017, 2, .	5.2	30
111	Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study. Scientific Reports, 2017, 7, 16183.	3.3	59
112	Significantly enhanced memory effect in metallic glass by multistep training. Physical Review B, 2017, 96, .	3.2	8
113	Machine Learning Approach for Prediction and Understanding of Glass-Forming Ability. Journal of Physical Chemistry Letters, 2017, 8, 3434-3439.	4.6	137
114	Resonance ultrasonic actuation and local structural rejuvenation in metallic glasses. Physical Review B, 2017, 95, .	3.2	14
115	Relaxation Decoupling in Metallic Glasses at Low Temperatures. Physical Review Letters, 2017, 118, 225901.	7.8	102
116	Universal structural softening in metallic glasses indicated by boson heat capacity peak. Applied Physics Letters, 2017, 111, .	3.3	15
117	L21 and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge,) Tj ETQq1	1 0.78431	4.rgBT/Ove
118	Tuning antiferromagnetic exchange interaction for spontaneous exchange bias in MnNiSnSi system. APL Materials, 2017, 5, .	5.1	25
119	Revealing flow behaviors of metallic glass based on activation of flow units. Journal of Applied Physics, 2016, 119, .	2.5	10
120	Flexible Allâ€Solidâ€State Supercapacitors based on Liquidâ€Exfoliated Blackâ€Phosphorus Nanoflakes. Advanced Materials, 2016, 28, 3194-3201.	21.0	290
121	Single-particle dynamics near the glass transition of a metallic glass. Physical Review E, 2016, 94, 062611.	2.1	11
122	A fast dynamic mode in rare earth based glasses. Journal of Chemical Physics, 2016, 144, 204507.	3.0	36
123	Revealing $\langle i \rangle \hat{l}^2 \langle i \rangle$ -relaxation mechanism based on energy distribution of flow units in metallic glass. Journal of Chemical Physics, 2016, 144, 144501.	3.0	29
124	Unconventional magnetization of Fe3O4 thin film grown on amorphous SiO2 substrate. AIP Advances, 2016, 6, .	1.3	15
125	Nonvolatile Multilevel Memory and Boolean Logic Gates Based on a Single Ni/[Pb(Mg1/3Nb2/3)O3]0.7[PbTiO3]0.3/Ni Heterostructure. Physical Review Applied, 2016, 6, .	3.8	23
126	The correlation between fragility, density, and atomic interaction in glass-forming liquids. Journal of Chemical Physics, 2016, 145, 034505.	3.0	7

#	Article	IF	Citations
127	Enhanced kinetic stability of a bulk metallic glass by high pressure. Applied Physics Letters, 2016, 109, .	3.3	20
128	Large anisotropic thermal transport properties observed in bulk single crystal black phosphorus. Applied Physics Letters, 2016, 108, .	3.3	27
129	Windows open for highly tunable magnetostructural phase transitions. APL Materials, 2016, 4, .	5.1	18
130	Magnetostructural martensitic transformations with large volume changes and magneto-strains in all- $\langle i \rangle d \langle j \rangle$ -metal Heusler alloys. Applied Physics Letters, 2016, 109, .	3.3	84
131	The Critical Criterion on Runaway Shear Banding in Metallic Glasses. Scientific Reports, 2016, 6, 21388.	3.3	18
132	Effects of atomic interaction stiffness on low-temperature relaxation of amorphous solids. Physical Chemistry Chemical Physics, 2016, 18, 26643-26650.	2.8	10
133	Teâ€Doped Black Phosphorus Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 9408-9415.	21.0	241
134	Ideal shear banding in metallic glass. Philosophical Magazine, 2016, 96, 3159-3176.	1.6	3
135	Large and Anisotropic Linear Magnetoresistance in Single Crystals of Black Phosphorus Arising From Mobility Fluctuations. Scientific Reports, 2016, 6, 23807.	3.3	26
136	NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds. Scientific Reports, 2016, 6, 23172.	3.3	41
137	Structural evolution of nanoscale metallic glasses during high-pressure torsion: A molecular dynamics analysis. Scientific Reports, 2016, 6, 36627.	3.3	21
138	Unveiling atomic-scale features of inherent heterogeneity in metallic glass by molecular dynamics simulations. Physical Review B, 2016, 93, .	3.2	39
139	Memory Effect Manifested by a Boson Peak in Metallic Glass. Physical Review Letters, 2016, 116, 175901.	7.8	51
140	Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses. Journal of Physical Chemistry Letters, 2016, 7, 4945-4950.	4.6	25
141	Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity. Scientific Reports, 2016, 6, 23026.	3.3	44
142	Shear-banding Induced Indentation Size Effect in Metallic Glasses. Scientific Reports, 2016, 6, 28523.	3.3	15
143	Critical scaling of icosahedral medium-range order in CuZr metallic glass-forming liquids. Scientific Reports, 2016, 6, 35967.	3.3	32
144	Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass. Scientific Reports, 2016, 6, 29357.	3.3	21

#	Article	IF	Citations
145	A method of measuring dynamic strain under electromagnetic forming conditions. Review of Scientific Instruments, 2016, 87, 043902.	1.3	3
146	Wide temperature window of magnetostructural transition achieved in Mn0.4Fe0.6NiSi1â^'xGax by a two-step isostructural alloying process. AIP Advances, 2016, 6, 056220.	1.3	10
147	A Centrosymmetric Hexagonal Magnet with Superstable Biskyrmion Magnetic Nanodomains in a Wide Temperature Range of 100–340 K. Advanced Materials, 2016, 28, 6887-6893.	21.0	209
148	Liquidâ€Exfoliated Black Phosphorous Nanosheet Thin Films for Flexible Resistive Random Access Memory Applications. Advanced Functional Materials, 2016, 26, 2016-2024.	14.9	161
149	Atomic-Level Characterization of Dynamics of Copper Ions in CuAgSe. Journal of Physical Chemistry C, 2016, 120, 3229-3234.	3.1	13
150	Microstructural heterogeneity perspective on the yield strength of metallic glasses. Journal of Applied Physics, 2016, 119, .	2.5	10
151	High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi. Physical Review B, 2015, 92, .	3.2	51
152	Effect of dynamical heterogeneity on heat capacity at glass transition in typical silicate glasses. Journal of Applied Physics, 2015, 118, .	2.5	3
153	Evolution of structural and dynamic heterogeneities during elastic to plastic transition in metallic glass. Journal of Applied Physics, $2015,118,.$	2.5	17
154	Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal. Applied Physics Letters, 2015, 107, .	3.3	50
155	Revealing localized plastic flow in apparent elastic region before yielding in metallic glasses. Journal of Applied Physics, 2015, 118, .	2.5	19
156	Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses. Journal of Chemical Physics, 2015, 143, 041104.	3.0	9
157	Magnetoelastic Multiferroics: Unprecedentedly Wide Curieâ€Temperature Windows as Phaseâ€Transition Design Platform for Tunable Magnetoâ€Multifunctional Materials (Adv. Electron. Mater. 7/2015). Advanced Electronic Materials, 2015, 1, .	5.1	1
158	Unprecedentedly Wide Curieâ€Temperature Windows as Phaseâ€Transition Design Platform for Tunable Magnetoâ€Multifunctional Materials. Advanced Electronic Materials, 2015, 1, 1500076.	5.1	75
159	Disorder-Induced Enhancement of Magnetic Properties in Ball-Milled Fe ₂ CrAl Alloy. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	3
160	Hidden topological order and its correlation with glass-forming ability in metallic glasses. Nature Communications, 2015, 6, 6035.	12.8	107
161	Five-fold symmetry as indicator of dynamic arrest in metallic glass-forming liquids. Nature Communications, 2015, 6, 8310.	12.8	206
162	Enhancement of the thermoelectric properties of MnSb ₂ Se ₄ through Cu resonant doping. RSC Advances, 2015, 5, 99065-99073.	3.6	11

#	Article	IF	Citations
163	First-principles investigation of possible martensitic transformation and magnetic properties of Heusler-type Pt2-xMn1+xIn alloys. Functional Materials Letters, 2015, 08, 1550064.	1.2	3
164	Rejuvenation of metallic glasses by non-affine thermal strain. Nature, 2015, 524, 200-203.	27.8	568
165	Coupled Magnetic and Structural Transitions in Fe-Doped MnNiSi Compounds. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	3
166	Transition from semiconducting to metallic-like conducting and weak antilocalization effect in single crystals of LuPtSb. Applied Physics Letters, 2015, 106, 102102.	3.3	34
167	Realization of multifunctional shape-memory ferromagnets in all- <i>d</i> -metal Heusler phases. Applied Physics Letters, 2015, 107, .	3.3	152
168	NMR investigation of atomic and electronic structures of half-Heusler topologically nontrivial semimetals. Physica Status Solidi (B): Basic Research, 2015, 252, 357-360.	1.5	16
169	Microscopic dynamics perspective on the relationship between Poisson's ratio and ductility of metallic glasses. Journal of Chemical Physics, 2014, 140, 044511.	3.0	33
170	Magnetization jumps and exchange bias induced by a partially disordered antiferromagnetic state in (FeTiO3)0.9-(Fe2O3)0.1. Journal of Applied Physics, 2014, 115, 213907.	2.5	9
171	Superhydrophobic metallic glass surface with superior mechanical stability and corrosion resistance. Applied Physics Letters, 2014, 104, .	3.3	106
172	Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nature Communications, 2014, 5, 5823.	12.8	251
173	Magneto-transport properties of oriented Mn2CoAl films sputtered on thermally oxidized Si substrates. Applied Physics Letters, 2014, 104, .	3.3	66
174	Compositional origin of unusual $\langle i \rangle \hat{l}^2 \langle i \rangle$ -relaxation properties in La-Ni-Al metallic glasses. Journal of Chemical Physics, 2014, 141, 084506.	3.0	65
175	A new class of topological insulators from I-III-IV half-Heusler compounds with strong band inversion strength. Journal of Applied Physics, 2014, 115, 083704.	2.5	5
176	The equipment for the preparation of micro and nanoscale metallic glassy fibers. Review of Scientific Instruments, 2014, 85, 103907.	1.3	2
177	Anomalous magnetic configuration of Mn2NiAl ribbon and the role of hybridization in the martensitic transformation of Mn50Ni50â°'xAlx ribbons. Applied Physics Letters, 2014, 105, 232404.	3.3	10
178	Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films. Journal of Applied Physics, 2014, 116, .	2.5	10
179	Structural, magnetic and transport properties of Co2FeAl Heusler films with varying thickness. Journal of Magnetism and Magnetic Materials, 2014, 362, 52-57.	2.3	10
180	Evolution of atomic rearrangements in deformation in metallic glasses. Physical Review E, 2014, 90, 042303.	2.1	11

#	Article	IF	CITATIONS
181	Flow Unit Perspective on Room Temperature Homogeneous Plastic Deformation in Metallic Glasses. Physical Review Letters, 2014, 113, 045501.	7.8	165
182	High-Entropy Metallic Glasses. Jom, 2014, 66, 2067-2077.	1.9	132
183	Weak Antilocalization Effect and Noncentrosymmetric Superconductivity in a Topologically Nontrivial Semimetal LuPdBi. Scientific Reports, 2014, 4, 5709.	3.3	112
184	Significant disorder-induced enhancement of the magnetization of Fe2CrGa by ball milling. Journal of Applied Physics, 2013, 114, 013903.	2.5	24
185	Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses. Applied Physics Letters, 2013, 103, 081904.	3.3	38
186	Correlation between structural relaxation and connectivity of icosahedral clusters in CuZr metallic glass-forming liquids. Physical Review B, 2013, 88, .	3.2	80
187	A new spin gapless semiconductors family: Quaternary Heusler compounds. Europhysics Letters, 2013, 102, 17007.	2.0	222
188	Role of covalent hybridization in the martensitic structure and magnetic properties of shape-memory alloys: The case of Ni50Mn5+xGa35-xCu10. Applied Physics Letters, 2013, 102, .	3.3	20
189	Large Linear Magnetoresistance and Shubnikov-de Hass Oscillations in Single Crystals of YPdBi Heusler Topological Insulators. Scientific Reports, 2013, 3, 2181.	3.3	90
190	Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window. Applied Physics Letters, 2013, 102, .	3.3	101
191	Stress-versus temperature-induced structural evolution in metallic glasses. Applied Physics Letters, 2013, 102, 131908.	3.3	14
192	Ferromagnetic structures in Mn2CoGa and Mn2CoAl doped by Co, Cu, V, and Ti. Journal of Applied Physics, 2013, 113, .	2.5	30
193	Phase stability, magnetism and generalized electron-filling rule of vanadium-based inverse Heusler compounds. Europhysics Letters, 2013, 104, 27012.	2.0	18
194	Transiently suppressed relaxations in metallic glass. Applied Physics Letters, 2013, 103, .	3.3	6
195	Characterization of flow units in metallic glass through density variation. Journal of Applied Physics, 2013, 114, 123514.	2.5	38
196	Crossover of magnetoresistance in the zero-gap half-metallic Heusler alloy Fe ₂ CoSi. Europhysics Letters, 2013, 103, 37011.	2.0	77
197	Metallic glass mold insert for hot embossing of polymers. Journal of Applied Physics, 2012, 112, .	2.5	33
198	Characterization of mechanical heterogeneity in amorphous solids. Journal of Applied Physics, 2012, 112, .	2.5	25

#	Article	IF	CITATIONS
199	Fabrication and characterization of the gapless half-Heusler YPtSb thin films. Journal of Applied Physics, 2012, 112, 103910.	2.5	13
200	Magnetic-field-induced martensitic transformation in MnNiAl:Co alloys. Applied Physics Letters, 2012, 100, .	3.3	37
201	Martensitic and magnetic transformation in Mn50Ni50â^'xSnx ferromagnetic shape memory alloys. Journal of Applied Physics, 2012, 112, .	2.5	34
202	Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nature Communications, 2012, 3, 873.	12.8	376
203	Tuning exchange bias by thermal fluctuation in Fe52Mn23Ga25 melt-spun ribbons. Applied Physics Letters, 2011, 99, .	3.3	15
204	Influence of tetragonal distortion on the topological electronic structure of the half-Heusler compound LaPtBi from first principles. Applied Physics Letters, 2011, 99, .	3.3	31
205	Large magnetization change and magnetoresistance associated with martensitic transformation in Mn2Ni1.36Sn0.32Co0.32 alloy. Journal of Applied Physics, 2011, 110, 013916.	2.5	15
206	Magnetostructural Transformation and Magnetoresponsive Properties of ${m MnNiGe}_{1-x}$ m Sn $_{x}$ Alloys. IEEE Transactions on Magnetics, 2011, 47, 4041-4043.	2.1	68
207	Coexistence of reentrant-spin-glass and ferromagnetic martensitic phases in the Mn2Ni1.6Sn0.4 Heusler alloy. Applied Physics Letters, 2011, 99, .	3.3	100
208	Polyamorphic transitions in Ce-based metallic glasses by synchrotron radiation. Physical Review B, 2011, 84, .	3.2	35
209	Polymorphic magnetization and local ferromagnetic structure in Co-doped Mn <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> NiGa alloys. Physical Review B, 2011, 84, .	3.2	40
210	Unusual magnetic anisotropy in the ferromagnetic shape-memory alloy Ni50Fe23Ga27. Applied Physics Letters, 2011, 99, .	3.3	10
211	Response to "Comment on â€Mechanical heterogeneity and mechanism of plasticity in metallic glasses'â€ [Appl. Phys. Lett. 96, 026101 (2010)]. Applied Physics Letters, 2010, 96, 026102.	€ <u>%</u> ;―	1
212	Fiber metallic glass laminates. Journal of Materials Research, 2010, 25, 2287-2291.	2.6	2
213	Coherent tunneling and giant tunneling magnetoresistance in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow><mml:mn>2- Temperature dependence of ReseabScription spectra in the ferromagnetic Heusler alloys<mml:math< td=""><td><<mark>};;2</mark>ml:mn</td><td>>¹³⁹ ></td></mml:math<></mml:mn></mml:msub></mml:mrow></mml:math>	< <mark>};;2</mark> ml:mn	> ¹³⁹ >
214	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>Mn</mml:mtext></mml:mrow><mml:mn>2 xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mtext>Co</mml:mtext></mml:mrow><mml:mn>2.</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:mn></mml:msub></mml:mrow>	0.2	10
215	Temperature dependences f tunneling magnetoresistance in epitaxial magnetic tunnel junctions using a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td></td><td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>		
216	Correlation between dynamic flow and thermodynamic glass transition in metallic glasses. Applied Physics Letters, 2010, 96, .	3.3	42

#	Article	IF	CITATIONS
217	Valence fluctuation and electron–phonon coupling in La68â^'xCexAl10Cu20Co2 (x=0, 34, and 68) metallic glasses. Journal of Applied Physics, 2010, 108, 033525.	2.5	4
218	An electronic structure perspective on glass-forming ability in metallic glasses. Applied Physics Letters, 2010, 96, .	3.3	70
219	Giant exchange bias based on magnetic transition in \hat{I}^3 -Fe2MnGa melt-spun ribbons. Applied Physics Letters, 2010, 97, .	3.3	46
220	Effect of local structures and atomic packing on glass forming ability in CuxZr100â^'x metallic glasses. Applied Physics Letters, 2010, 96, .	3.3	189
221	Correlations between elastic moduli and molar volume in metallic glasses. Applied Physics Letters, 2009, 94, .	3.3	36
222	Demonstration of Half-Metallicity in Fermi-Level-Tuned Heusler Alloy <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Co</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:m< td=""><td>i>FeAl<td>ml:388 < mml:</td></td></mml:m<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:math>	i>FeAl <td>ml:388 < mml:</td>	ml :3 88 < mml:
223	Mechanical heterogeneity and mechanism of plasticity in metallic glasses. Applied Physics Letters, 2009, 94, .	3.3	43
224	Understanding exceptional thermodynamic and kinetic stability of amorphous sulfur obtained by rapid compression. Applied Physics Letters, 2009, 94, 011910.	3.3	25
225	Bulk Metallic Glasses with Functional Physical Properties. Advanced Materials, 2009, 21, 4524-4544.	21.0	413
226	Bulk Metallic Glasses with Functional Physical Properties (Adv. Mater. 45/2009). Advanced Materials, 2009, 21, NA-NA.	21.0	1
227	Giant tunneling magnetoresistance up to 330% at room temperature in sputter deposited Co2FeAl/MgO/CoFe magnetic tunnel junctions. Applied Physics Letters, 2009, 95, .	3.3	156
228	Soft ytterbium-based bulk metallic glasses with strong liquid characteristic by design. Applied Physics Letters, 2009, 94, 041910.	3.3	33
229	CaLi-based bulk metallic glasses with multiple superior properties. Applied Physics Letters, 2008, 93, .	3.3	37
230	Ductile to brittle transition in dynamic fracture of brittle bulk metallic glass. Journal of Applied Physics, 2008, 103, .	2.5	20
231	Crack in thin metallic glassy sheet: Shear direction periodically changed fracture path. Journal of Applied Physics, 2008, 104, .	2.5	9
232	Thulium-based bulk metallic glass. Applied Physics Letters, 2008, 92, .	3.3	24
233	Strain distribution in Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass investigated by $\langle i \rangle$ in situ $\langle i \rangle$ tensile tests under synchrotron radiation. Journal of Applied Physics, 2008, 104, .	2.5	64
234	Deformation behaviors and mechanism of Ni–Co–Nb–Ta bulk metallic glasses with high strength and plasticity. Journal of Materials Research, 2007, 22, 869-875.	2.6	23

#	Article	IF	Citations
235	Shear modulus as a dominant parameter in glass transitions: Ultrasonic measurement of the temperature dependence of elastic properties of glasses. Physical Review B, 2007, 76, .	3.2	19
236	Measurements of slowl 2 -relaxations in metallic glasses and supercooled liquids. Physical Review B, 2007, 75, .	3.2	132
237	Enhance plasticity of bulk metallic glasses by geometric confinement. Journal of Materials Research, 2007, 22, 2384-2388.	2.6	42
238	Impact of Microstructural Inhomogenities on the Ductility of Bulk Metallic Glasses. Materials Transactions, 2007, 48, 1806-1811.	1.2	8
239	Super Plastic Bulk Metallic Glasses at Room Temperature. Science, 2007, 315, 1385-1388.	12.6	1,033
240	Local temperature rises during mechanical testing of metallic glasses. Journal of Materials Research, 2007, 22, 419-427.	2.6	87
241	Pressure effects on mechanical properties of bulk metallic glass. Applied Physics Letters, 2007, 90, 051906.	3.3	45
242	The oxidation behavior of Cu–Zr–Ti–base bulk metallic glasses in air at 350–500°C. Oxidation of Metals, 2007, 67, 179-192.	2.1	20
243	Ductile Metallic Glasses in Supercooled Martensitic Alloys. Materials Transactions, 2006, 47, 2606-2609.	1.2	55
244	Formation and properties of Pr-based bulk metallic glasses. Journal of Materials Research, 2006, 21, 369-374.	2.6	23
245	Superior glass-forming ability of CuZr alloys from minor additions. Journal of Materials Research, 2006, 21, 1674-1679.	2.6	81
246	Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Applied Physics Letters, 2006, 89, 241917.	3.3	67
247	Understanding the Glass-forming Ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic. Journal of Materials Research, 2005, 20, 2307-2313.	2.6	187
248	Pressure-temperature-time-transition diagram in a strong metallic supercooled liquid. Europhysics Letters, 2005, 71, 611-617.	2.0	5
249	Microstructure- and property-controllable NdAlNiCuFe alloys by varying Fe content. Journal of Materials Research, 2005, 20, 314-319.	2.6	9
250	Bulk Scandium-based Metallic Glasses. Journal of Materials Research, 2005, 20, 2243-2247.	2.6	30
251	Magnetic properties and spin polarization of Co2MnSiHeusler alloy thin films epitaxially grown on GaAs (001). Physical Review B, 2005, 71, .	3.2	191
252	Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters, 2005, 85, 77-87.	1.2	1,061

#	Article	IF	CITATIONS
253	High-pressure suppression of crystallization in the metallic supercooled liquidZr41Ti14Cu12.5Ni10Be22.5: Influence of viscosity. Physical Review B, 2004, 70, .	3.2	11
254	Kinetic nature of hard magnetic Nd50Al15Fe15Co20 bulk metallic glass with distinct glass transition. Journal of Materials Research, 2004, 19, 1307-1310.	2.6	13
255	Effect of poloidal sheared flow on the long-range correlation characters of edge plasma turbulent transport. Physics of Plasmas, 2004, 11, 2075-2081.	1.9	2
256	Effect of pressure on nucleation and growth in the Zr46.75Ti8.25Cu7.5Ni10Be27.5bulk glass-forming alloy investigated using in situx-ray diffraction. Physical Review B, 2003, 68, .	3.2	31
257	Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa. Applied Physics Letters, 2003, 82, 424-426.	3.3	243
258	Responses of glassy structure and properties to pressure and devitrification. Applied Physics Letters, 2003, 83, 2814-2816.	3.3	19
259	Response to "Comment on †Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature†M ―[Appl. Phys. Lett. 80, 3015 (2002)]. Applied Physics Letters, 2002, 80, 3017-3017.	3.3	О
260	Magnetic entropy change in LaFe[sub $13\hat{a}^*x$]Si[sub x] intermetallic compounds. Journal of Applied Physics, 2002, 91, 8537.	2.5	29
261	Magnetic Field-Controlled Shape Memory in Ni52.5Mn23.5Ga24 Single Crystals. Advanced Engineering Materials, 2001, 3, 330-333.	3.5	4
262	Formation and properties of Zr ₄₈ Nb ₈ Fe ₈ Cu ₁₂ Be ₂₄ bulk metallic glass. Journal of Materials Research, 2001, 16, 1675-1679.	2.6	27
263	Magnetic Field-Controlled Shape Memory in Ni52.5Mn23.5Ga24 Single Crystals. Advanced Engineering Materials, 2001, 3, 330-333.	3.5	2
264	Preparation of a new Zr42Ti12Cu14Ni10Be20Mg1Y1 bulk amorphous alloy. Journal of Materials Science Letters, 2000, 19, 1499-1500.	0.5	3
265	Elastic constants of Pd39Ni10Cu30P21 bulk metallic glass under high pressure. Applied Physics Letters, 2000, 77, 3734-3736.	3.3	41
266	Reversible phase transition between amorphous and crystalline in Zr41.2Ti13.8Cu12.5Ni10Be22.5 under high pressure at room temperature. Applied Physics Letters, 2000, 76, 2874-2876.	3.3	20
267	Crystallization of Bulk Zr48Nb8Cu14Ni12Be18Metallic Glass. Materials Research Society Symposia Proceedings, 2000, 644, 521.	0.1	О
268	Ultrasonic investigation of Pd39Ni10Cu30P21 bulk metallic glass upon crystallization. Applied Physics Letters, 2000, 77, 1147-1149.	3.3	57
269	Initial phase formation in Nb/Si multilayers deposited at different temperatures. Journal of Applied Physics, 1996, 80, 1422-1427.	2.5	13
270	Interactions between the interface of titanium and fullerene. Journal of Applied Physics, 1996, 79, 149-152.	2.5	10

#	Article	IF	CITATION
271	Amorphization phenomenon in Ni/amorphous Si multilayers. Journal of Materials Research, 1994, 9, 401-405.	2.6	7
272	Comparison of Interdiffusion Behavior in MoSi and TiSi Multilayers. Physica Status Solidi A, 1993, 136, 411-421.	1.7	1
273	Interdiffusion study of amorphous Ni–Si multilayer at low temperature. Journal of Applied Physics, 1993, 74, 2471-2474.	2.5	14
274	Relationship between characteristics of modulation peaks and modulation wavelength, average composition, and interdiffusion tendency of multilayers. Journal of Materials Research, 1992, 7, 1423-1426.	2.6	9
275	Unconventional Anomalous Hall Effect in the Canted Antiferromagnetic Halfâ€Heusler Compound DyPtBi. Advanced Functional Materials, 0, , 2107526.	14.9	6