Hanne Demant Hansen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/270087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming the PEG-addiction: well-defined alternatives to PEG, from structure–property relationships to better defined therapeutics. Polymer Chemistry, 2011, 2, 1900.	3.9	356
2	α-Synuclein Aggregation and Ser-129 Phosphorylation-dependent Cell Death in Oligodendroglial Cells. Journal of Biological Chemistry, 2009, 284, 10211-10222.	3.4	123
3	Polypeptoid- <i>block</i> -polypeptide Copolymers: Synthesis, Characterization, and Application of Amphiphilic Block Copolypept(o)ides in Drug Formulations and Miniemulsion Techniques. Biomacromolecules, 2014, 15, 548-557.	5.4	122
4	A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain. International Journal of Molecular Sciences, 2021, 22, 835.	4.1	96
5	The Center for Integrated Molecular Brain Imaging (Cimbi) database. NeuroImage, 2016, 124, 1213-1219.	4.2	95
6	Polymeric Nanoparticles with Neglectable Protein Corona. Small, 2020, 16, e1907574.	10.0	95
7	Polypept(o)ides: Hybrid Systems Based on Polypeptides and Polypeptoids. Macromolecular Rapid Communications, 2015, 36, 1943-1957.	3.9	94
8	Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers. Nano Letters, 2017, 17, 4665-4674.	9.1	69
9	Serotonergic mechanisms in the migraine brain – a systematic review. Cephalalgia, 2017, 37, 251-264.	3.9	68
10	Solution Properties of Polysarcosine: From Absolute and Relative Molar Mass Determinations to Complement Activation. Macromolecules, 2018, 51, 2653-2661.	4.8	66
11	Targeting distinct myeloid cell populations inÂvivo using polymers, liposomes and microbubbles. Biomaterials, 2017, 114, 106-120.	11.4	63
12	Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nature Communications, 2018, 9, 5306.	12.8	55
13	Poly(Sarcosine) Surface Modification Imparts Stealthâ€Like Properties to Liposomes. Small, 2019, 15, e1904716.	10.0	50
14	<i>Trans</i> -Cyclooctene-Functionalized PeptoBrushes with Improved Reaction Kinetics of the Tetrazine Ligation for Pretargeted Nuclear Imaging. ACS Nano, 2020, 14, 568-584.	14.6	50
15	Biomolecule-corona formation confers resistance of bacteria to nanoparticle-induced killing: Implications for the design of improved nanoantibiotics. Biomaterials, 2019, 192, 551-559.	11.4	48
16	Metabolic Fate of Hallucinogenic NBOMes. Chemical Research in Toxicology, 2016, 29, 96-100.	3.3	42
17	A versatile post-polymerization modification method for polyglutamic acid: synthesis of orthogonal reactive polyglutamates and their use in "click chemistry― Polymer Chemistry, 2013, 4, 2989.	3.9	38
18	Cooperative Catechol-Functionalized Polypept(o)ide Brushes and Ag Nanoparticles for Combination of Protein Resistance and Antimicrobial Activity on Metal Oxide Surfaces. Biomacromolecules, 2018, 19, 1602-1613.	5.4	38

HANNE DEMANT HANSEN

#	Article	IF	CITATIONS
19	Radiosynthesis and In Vivo Evaluation of Novel Radioligands for PET Imaging of Cerebral 5-HT ₇ Receptors. Journal of Nuclear Medicine, 2014, 55, 640-646.	5.0	37
20	Orthogonally reactive amino acids and end groups in NCA polymerization. Polymer Chemistry, 2017, 8, 957-971.	3.9	35
21	No change in [¹¹ C]CUMlâ€101 binding to 5â€HT _{1A} receptors after intravenous citalopram in human. Synapse, 2012, 66, 880-884.	1.2	33
22	Synthesis of Amphiphilic Block Copolypept(o)ides by Bifunctional Initiators: Making PeptoMicelles Redox Sensitive. Macromolecular Rapid Communications, 2015, 36, 2083-2091.	3.9	33
23	Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT ₇ Receptor: Synthesis, Pharmacology, Radiolabeling, and in Vivo Brain Imaging in Pigs. Journal of Medicinal Chemistry, 2015, 58, 3631-3636.	6.4	32
24	Cerebral 5-HT release correlates with [¹¹ C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 425-434.	4.3	31
25	Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step. ACS Macro Letters, 2017, 6, 1140-1145.	4.8	29
26	Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry - A European Journal, 2018, 24, 12131-12142.	3.3	29
27	Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. Journal of Controlled Release, 2018, 282, 25-34.	9.9	29
28	FAS-Dependent Cell Death in α-Synuclein Transgenic Oligodendrocyte Models of Multiple System Atrophy. PLoS ONE, 2013, 8, e55243.	2.5	28
29	Evaluating chemical ligation techniques for the synthesis of block copolypeptides, polypeptoids and block copolypept(o)ides: a comparative study. Polymer Chemistry, 2015, 6, 4612-4623.	3.9	27
30	Complexity and simplification in the development of nanomedicines. Nanomedicine, 2015, 10, 3093-3097.	3.3	27
31	Rethinking Cysteine Protective Groups: <i>S</i> â€Alkylsulfonylâ€ <scp>l</scp> â€Cysteines for Chemoselective Disulfide Formation. Chemistry - A European Journal, 2016, 22, 18085-18091.	3.3	27
32	Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their application as pDNA vaccines. Journal of Controlled Release, 2017, 258, 146-160.	9.9	27
33	Automatic delineation of brain regions on MRI and PET images from the pig. Journal of Neuroscience Methods, 2018, 294, 51-58.	2.5	27
34	Association Between Sumatriptan Treatment During a Migraine Attack and Central 5-HT _{1B} Receptor Binding. JAMA Neurology, 2019, 76, 834.	9.0	27
35	Synthesis, radiolabeling and inÂvivo evaluation of [11C](R)-1-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]-3-(2-pyrazinyloxy)-2-propanol, a potential PET radioligand for the 5-HT7 receptor. European Journal of Medicinal Chemistry, 2014, 79, 152-163.	5.5	26
36	High brain serotonin levels in migraine between attacks: A 5-HT4 receptor binding PET study. NeuroImage: Clinical, 2018, 18, 97-102.	2.7	26

#	Article	IF	CITATIONS
37	Low 5-HT _{1B} receptor binding in the migraine brain: A PET study. Cephalalgia, 2018, 38, 519-527.	3.9	26
38	A cyclic peptidylic inhibitor of murine urokinase-type plasminogen activator: changing species specificity by substitution of a single residue. Biochemical Journal, 2008, 412, 447-457.	3.7	25
39	Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers. Polymers, 2016, 8, 427.	4.5	25
40	Tetrazine- and <i>trans</i> -cyclooctene-functionalised polypept(o)ides for fast bioorthogonal tetrazine ligation. Polymer Chemistry, 2020, 11, 4396-4407.	3.9	25
41	Synthesis and evaluation of [11C]Cimbi-806 as a potential PET ligand for 5-HT7 receptor imaging. Bioorganic and Medicinal Chemistry, 2012, 20, 4574-4581.	3.0	23
42	The importance of small polar radiometabolites in molecular neuroimaging: A PET study with [¹¹ C]Cimbi-36 labeled in two positions. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 659-668.	4.3	23
43	Efficient Shielding of Polyplexes Using Heterotelechelic Polysarcosines. Polymers, 2018, 10, 689.	4.5	23
44	Advances in simultaneous PET/MR for imaging neuroreceptor function. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1148-1166.	4.3	23
45	Design, synthesis, radiolabeling and in vivo evaluation of potential positron emission tomography (PET) radioligands for brain imaging of the 5-HT7 receptor. Bioorganic and Medicinal Chemistry, 2014, 22, 1736-1750.	3.0	22
46	Poly(<i>S</i> -ethylsulfonyl- <scp>l</scp> -cysteines) for Chemoselective Disulfide Formation. Macromolecules, 2016, 49, 8146-8153.	4.8	22
47	Synthesis and Characterization of Stimuliâ€Responsive Starâ€Like Polypept(o)ides: Introducing Biodegradable PeptoStars. Macromolecular Bioscience, 2017, 17, 1600514.	4.1	21
48	Direct comparison of [¹⁸ F]MH.MZ and [¹⁸ F]altanserin for 5â€HT _{2A} receptor imaging with PET. Synapse, 2013, 67, 328-337.	1.2	20
49	<i>Quo vadis</i> nanomedicine?. Nanomedicine, 2015, 10, 3089-3091.	3.3	20
50	PET-BIDS, an extension to the brain imaging data structure for positron emission tomography. Scientific Data, 2022, 9, 65.	5.3	20
51	Effects of a single dose of psilocybin on behaviour, brain 5-HT2A receptor occupancy and gene expression in the pig. European Neuropsychopharmacology, 2021, 42, 1-11.	0.7	19
52	Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands. Nuclear Medicine and Biology, 2016, 43, 455-462.	0.6	18
53	Impact of Branching on the Solution Behavior and Serum Stability of Starlike Block Copolymers. Biomacromolecules, 2019, 20, 375-388.	5.4	18
54	Radiolabelling and PET brain imaging of the α1-adrenoceptor antagonist Lu AE43936. Nuclear Medicine and Biology, 2013, 40, 135-140.	0.6	17

#	Article	IF	CITATIONS
55	11C-labeling and preliminary evaluation of vortioxetine as a PET radioligand. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2408-2411.	2.2	16
56	Functional Characterization of 5-HT _{1B} Receptor Drugs in Nonhuman Primates Using Simultaneous PET-MR. Journal of Neuroscience, 2017, 37, 10671-10678.	3.6	16
57	Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 986-990.	2.2	16
58	Parkinson patients have a presynaptic serotonergic deficit: A dynamic deep brain stimulation PET study. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 0271678X2098238.	4.3	16
59	11C-labeling and preliminary evaluation of pimavanserin as a 5-HT2A receptor PET-radioligand. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1053-1056.	2.2	15
60	¹⁸ F-Labelling of electron rich iodonium ylides: application to the radiosynthesis of potential 5-HT _{2A} receptor PET ligands. Organic and Biomolecular Chemistry, 2017, 15, 4351-4358.	2.8	15
61	Poly(<i>S</i> -ethylsulfonyl- <scp>l</scp> -homocysteine): An α-Helical Polypeptide for Chemoselective Disulfide Formation. Macromolecules, 2018, 51, 8188-8196.	4.8	14
62	Labeling and preliminary in vivo evaluation of the 5-HT7 receptor selective agonist [11C]E-55888. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1901-1904.	2.2	13
63	Convergent 18F-labeling and evaluation of N-benzyl-phenethylamines as 5-HT2A receptor PET ligands. Bioorganic and Medicinal Chemistry, 2016, 24, 5353-5356.	3.0	13
64	The Influence of Block Ionomer Microstructure on Polyplex Properties: Can Simulations Help to Understand Differences in Transfection Efficiency?. Small, 2017, 13, 1603694.	10.0	13
65	Therapeutic melanoma inhibition by local micelle-mediated cyclic nucleotide repression. Nature Communications, 2021, 12, 5981.	12.8	13
66	Autoradiographic imaging and quantification of the high-affinity CHB binding sites in rodent brain using 3H-HOCPCA. Neurochemistry International, 2016, 100, 138-145.	3.8	12
67	Cerebellar heterogeneity and its impact on PET data quantification of 5-HT receptor radioligands. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3243-3252.	4.3	12
68	Migraine is associated with high brain 5-HT levels as indexed by 5-HT ₄ receptor binding. Cephalalgia, 2019, 39, 526-532.	3.9	12
69	Evaluation of [¹⁸ F]2FP3 in pigs and nonâ€human primates. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 34-42.	1.0	12
70	Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI Research, 2020, 10, 124.	2.5	12
71	Multifunctional Cationic PeptoStars as siRNA Carrier: Influence of Architecture and Histidine Modification on Knockdown Potential. Macromolecular Bioscience, 2020, 20, 1900152.	4.1	11
72	Classics in Neuroimaging: The Serotonergic 2A Receptor System—from Discovery to Modern Molecular Imaging. ACS Chemical Neuroscience, 2018, 9, 1226-1229.	3.5	10

HANNE DEMANT HANSEN

#	Article	IF	CITATIONS
73	Secondary Structureâ€Driven Hydrogelation Using Foldable Telechelic Polymer–Peptide Conjugates. Macromolecular Rapid Communications, 2018, 39, e1800459.	3.9	10
74	A regularized full reference tissue model for PET neuroreceptor mapping. NeuroImage, 2016, 139, 405-414.	4.2	9
75	Facile synthesis of amphiphilic AB3 and A3B miktoarm PeptoMiktoStars. Polymer Journal, 2020, 52, 119-132.	2.7	9
76	Radiosynthesis and Evaluation of [¹¹ C]3-Hydroxycyclopent-1-enecarboxylic Acid as Potential PET Ligand for the High-Affinity γ-Hydroxybutyric Acid Binding Sites. ACS Chemical Neuroscience, 2017, 8, 22-27.	3.5	8
77	In Vitro and In Vivo Characterization of Dibenzothiophene Derivatives [125I]Iodo-ASEM and [18F]ASEM as Radiotracers of Homo- and Heteromeric α7 Nicotinic Acetylcholine Receptors. Molecules, 2020, 25, 1425.	3.8	8
78	The zebrafish embryo as an <i>in vivo</i> model for screening nanoparticle-formulated lipophilic anti-tuberculosis compounds. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	8
79	[¹¹ C]Carboxylated Tetrazines for Facile Labeling of Transâ€Cycloocteneâ€Functionalized PeptoBrushes. Macromolecular Rapid Communications, 2022, 43, e2100655.	3.9	8
80	Human biodistribution and radiation dosimetry of the 5-HT2A receptor agonist Cimbi-36 labeled with carbon-11 in two positions. EJNMMI Research, 2019, 9, 71.	2.5	7
81	Synthesis and Pharmacological Evaluation of [¹¹ C]4-Methoxy- <i>N</i> -[2-(thiophen-2-yl)imidazo[1,2- <i>a</i>]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand Selective for the Î-Subunit-Containing Î ³ -Aminobutyric Acid Type A Receptors. ACS Omega, 2019, 4, 8846-8851.	3.5	7
82	Imaging HDACs In Vivo: Cross-Validation of the [11C]Martinostat Radioligand in the Pig Brain. Molecular Imaging and Biology, 2020, 22, 569-577.	2.6	7
83	Visual stimuli induce serotonin release in occipital cortex: A simultaneous positron emission tomography/magnetic resonance imaging study. Human Brain Mapping, 2020, 41, 4753-4763.	3.6	7
84	Design of Infusion Schemes for Neuroreceptor Imaging: Application to [¹¹ C]Flumazenil-PET Steady-State Study. BioMed Research International, 2016, 2016, 1-8.	1.9	6
85	Racemic S â€(ethylsulfonyl)―dl â€cysteine N â€Carboxyanhydrides Improve Chain Lengths and Monomer Conversion for βâ€5heetâ€Controlled Ringâ€Opening Polymerization. Macromolecular Rapid Communications, 2021, 42, 2000470.	3.9	6
86	Radiolabeling of a polypeptide polymer for intratumoral delivery of alpha-particle emitter, 225Ac, and beta-particle emitter, 177Lu. Nuclear Medicine and Biology, 2022, 104-105, 11-21.	0.6	6
87	Radiosynthesis and preclinical evaluation of [¹¹ C]Cimbiâ€701 – Towards the imaging of cerebral 5â€HT ₇ receptors. Journal of Labelled Compounds and Radiopharmaceuticals, 2020, 63, 46-55.	1.0	3
88	Insight into the synthesis of N-methylated polypeptides. Polymer Chemistry, 2020, 11, 6919-6927.	3.9	3
89	Synthesis, radiofluorination, and preliminary evaluation of the potential 5â€HT _{2A} receptor agonists [¹⁸ F]Cimbiâ€92 and [¹⁸ F]Cimbiâ€150. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 586-591.	1.0	2
90	Polymeric Nanoparticles: Polymeric Nanoparticles with Neglectable Protein Corona (Small 18/2020). Small, 2020, 16, 2070100.	10.0	2

#	Article	IF	CITATIONS
91	Macromol. Rapid Commun. 9–10/2011. Macromolecular Rapid Communications, 2011, 32, .	3.9	1
92	Frontispiece: Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chemistry - A European Journal, 2018, 24, .	3.3	1
93	Impact of μ-map Processing and Transmission Scan Count Statistics on Quantification of PET Pig Brain Scans - and Temporal Variation of Scatter Correction Induced by μ-map Mismatch. , 2017, , .		0
94	P.182 Imaging histone deacetylases in vivo: cross-validation of the [11C]Martinostat radiotracer in the pig brain. European Neuropsychopharmacology, 2019, 29, S139-S140.	0.7	0