Robert M Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2700770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae. Environmental Microbiology, 2022, 24, 850-865.	3.8	3
2	Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis. Bioresource Technology, 2022, 348, 126780.	9.6	10
3	Life in hot acid: a genomeâ€based reassessment of the archaeal order <i>Sulfolobales</i> . Environmental Microbiology, 2021, 23, 3568-3584.	3.8	20
4	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	17.5	457
5	The biology of thermoacidophilic archaea from the order <i>Sulfolobales</i> . FEMS Microbiology Reviews, 2021, 45, .	8.6	24
6	Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. Environmental Microbiology Reports, 2021, 13, 272-293.	2.4	9
7	Intersection of Biotic and Abiotic Sulfur Chemistry Supporting Extreme Microbial Life in Hot Acid. Journal of Physical Chemistry B, 2021, 125, 5243-5257.	2.6	2
8	Genome-Scale Metabolic Model of <i>Caldicellulosiruptor bescii</i> Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. MSystems, 2021, 6, e0135120.	3.8	6
9	Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <i>Caldicellulosiruptor bescii</i> . MSystems, 2021, 6, e0134520.	3.8	10
10	Integrating Bioinformatics Tools Into Inquiry-Based Molecular Biology Laboratory Education Modules. Frontiers in Education, 2021, 6, .	2.1	0
11	The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in â€~Caldi World'. Extremophiles, 2020, 24, 1-15.	2.3	21
12	Metabolically engineered <i>Caldicellulosiruptor bescii</i> as a platform for producing acetone and hydrogen from lignocellulose. Biotechnology and Bioengineering, 2020, 117, 3799-3808.	3.3	15
13	Engineering the cellulolytic extreme thermophile <i>Caldicellulosiruptor bescii</i> to reduce carboxylic acids to alcohols using plant biomass as the energy source. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 585-597.	3.0	5
14	Genome Sequences of Five Type Strain Members of the Archaeal Family <i>Sulfolobaceae</i> , Acidianus ambivalens, Acidianus infernus, Stygiolobus azoricus, Sulfuracidifex metallicus, and Sulfurisphaera ohwakuensis. Microbiology Resource Announcements, 2020, 9, .	0.6	6
15	Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Extremophiles, 2020, 24, 511-518.	2.3	9
16	Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. Biotechnology for Biofuels, 2020, 13, 43.	6.2	9
17	Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Nature Communications, 2019, 10, 3548.	12.8	22
18	Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales. Environmental Microbiology, 2019, 21, 3696-3710.	3.8	19

#	Article	IF	CITATIONS
19	The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis. Journal of Biological Chemistry, 2019, 294, 9995-10005.	3.4	18
20	Lignocellulose solubilization and conversion by extremely thermophilic <i>Caldicellulosiruptor bescii</i> improves by maintaining metabolic activity. Biotechnology and Bioengineering, 2019, 116, 1901-1908.	3.3	14
21	Extreme thermophiles as emerging metabolic engineering platforms. Current Opinion in Biotechnology, 2019, 59, 55-64.	6.6	34
22	Extremely Thermoacidophilic <i>Metallosphaera</i> Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides. Applied and Environmental Microbiology, 2019, 85, .	3.1	9
23	Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (TÄpirins) from Extremely Thermophilic <i>Caldicellulosiruptor</i> Species. Applied and Environmental Microbiology, 2019, 85, .	3.1	14
24	Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Applied and Environmental Microbiology, 2018, 84, .	3.1	33
25	Sequential processing with fermentative <i>Caldicellulosiruptor kronotskyensis</i> and chemolithoautotrophic <i>Cupriavidus necator</i> for converting rice straw and CO ₂ to polyhydroxybutyrate. Biotechnology and Bioengineering, 2018, 115, 1624-1629.	3.3	21
26	Complete Genome Sequences of Extremely Thermoacidophilic Metal-Mobilizing Type Strain Members of the Archaeal Family Sulfolobaceae, Acidianus brierleyi DSM-1651, Acidianus sulfidivorans DSM-18786, and Metallosphaera hakonensis DSM-7519. Microbiology Resource Announcements, 2018, 7, .	0.6	6
27	A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum. Biotechnology and Bioengineering, 2018, 115, 2951-2961.	3.3	7
28	Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii. Extremophiles, 2018, 22, 629-638.	2.3	21
29	Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metabolic Engineering Communications, 2018, 7, e00073.	3.6	40
30	Biotechnology of extremely thermophilic archaea. FEMS Microbiology Reviews, 2018, 42, 543-578.	8.6	67
31	Simultaneous biosynthesis of (R)-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering. Metabolic Engineering Communications, 2018, 7, e00074.	3.6	15
32	Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the <i>Caldicellulosiruptor bescii</i> secretome. Biotechnology and Bioengineering, 2018, 115, 2426-2440.	3.3	16
33	Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima. Applied and Environmental Microbiology, 2018, 84, .	3.1	40
34	Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic <i>Caldicellulosiruptor</i> species. AICHE Journal, 2018, 64, 4218-4228.	3.6	19
35	Secretion and fusion of biogeochemically active archaeal membrane vesicles. Geobiology, 2018, 16, 659-673.	2.4	5
36	The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. Biotechnology for Biofuels, 2018, 11, 80.	6.2	11

#	Article	IF	CITATIONS
37	Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1377.	6.6	32
38	Ethanol production by the hyperthermophilic archaeon <i>Pyrococcus furiosus</i> by expression of bacterial bifunctional alcohol dehydrogenases. Microbial Biotechnology, 2017, 10, 1535-1545.	4.2	27
39	Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles, 2017, 21, 733-742.	2.3	48
40	Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	3.1	17
41	Two Distinct α- <scp> </scp> -Arabinofuranosidases in Caldicellulosiruptor Species Drive Degradation of Arabinose-Based Polysaccharides. Applied and Environmental Microbiology, 2017, 83, .	3.1	16
42	VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Environmental Microbiology, 2017, 19, 2831-2842.	3.8	12
43	Extremely thermophilic energy metabolisms: biotechnological prospects. Current Opinion in Biotechnology, 2017, 45, 104-112.	6.6	23
44	The renaissance of life near the boiling point – at last, genetics and metabolic engineering. Microbial Biotechnology, 2017, 10, 37-39.	4.2	7
45	Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Applied and Environmental Microbiology, 2017, 83, .	3.1	37
46	Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus. Biotechnology and Bioengineering, 2017, 114, 2947-2954.	3.3	3
47	<i><scp>C</scp>aldicellulosiruptor saccharolyticus</i> transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microbial Biotechnology, 2017, 10, 1546-1557.	4.2	11
48	Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	3.1	13
49	Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus. Frontiers in Microbiology, 2016, 7, 29.	3.5	38
50	A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2016, 82, 4421-4428.	3.1	41
51	Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO ₂ incorporation into 3â€hydroxypropionate by metabolically engineered <i>Pyrococcus furiosus</i> . Biotechnology and Bioengineering, 2016, 113, 2652-2660.	3.3	21
52	Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock―Reveal Generic and Specific Metal Responses. Applied and Environmental Microbiology, 2016, 82, 4613-4627.	3.1	58
53	Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species. Journal of Biological Chemistry, 2016, 291, 6732-6747.	3.4	44
54	Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea. Metabolic Engineering, 2016, 38, 446-463.	7.0	26

Robert M Kelly

#	Article	IF	CITATIONS
55	Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metabolic Engineering, 2016, 34, 71-79.	7.0	23
56	Machine learning reveals sexâ€specific 17βâ€estradiolâ€responsive expression patterns in white perch (<i>Morone americana</i>) plasma proteins. Proteomics, 2015, 15, 2678-2690.	2.2	13
57	The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. Minerals (Basel, Switzerland), 2015, 5, 397-451.	2.0	73
58	Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 2015, 6, 1209.	3.5	147
59	Complete Genome Sequences of <i>Caldicellulosiruptor</i> sp. Strain Rt8.B8, <i>Caldicellulosiruptor</i> sp. Strain Wai35.B1, and " <i>Thermoanaerobacter cellulolyticus</i> â€ Genome Announcements, 2015, 3, .	0.8	15
60	A mutant (â€~lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles, 2015, 19, 269-281.	2.3	19
61	Discrete and Structurally Unique Proteins (TÄpirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose. Journal of Biological Chemistry, 2015, 290, 10645-10656.	3.4	28
62	Bioprocessing analysis of <i>Pyrococcus furiosus</i> strains engineered for CO ₂ â€based 3â€hydroxypropionate production. Biotechnology and Bioengineering, 2015, 112, 1533-1543.	3.3	21
63	Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Applied and Environmental Microbiology, 2015, 81, 7159-7170.	3.1	36
64	Alcohol Selectivity in a Synthetic Thermophilic <i>n</i> -Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes. Applied and Environmental Microbiology, 2015, 81, 7187-7200.	3.1	24
65	A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria. Applied and Environmental Microbiology, 2015, 81, 7339-7347.	3.1	25
66	A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe. Metabolic Engineering, 2015, 27, 101-106.	7.0	51
67	Lignocellulosic Biomass Deconstruction by the Extremely Thermophilic Genus Caldicellulosiruptor. , 2015, , 91-120.		4
68	Production of lignofuels and electrofuels by extremely thermophilic microbes. Biofuels, 2014, 5, 499-515.	2.4	12
69	Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex. Journal of Biological Chemistry, 2014, 289, 2873-2879.	3.4	40
70	Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway. Applied and Environmental Microbiology, 2014, 80, 2536-2545.	3.1	28
71	The Order Thermococcales and the Family Thermococcaceae. , 2014, , 363-383.		11
72	Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metabolic Engineering, 2014, 22, 83-88.	7.0	27

#	Article	IF	CITATIONS
73	Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 2014, 38, 393-448.	8.6	145
74	Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17618-17623.	7.1	86
75	Cross-linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches to Improve Enzyme Performance. ACS Applied Materials & Interfaces, 2014, 6, 11899-11906.	8.0	55
76	Role of an Archaeal PitA Transporter in the Copper and Arsenic Resistance of Metallosphaera sedula, an Extreme Thermoacidophile. Journal of Bacteriology, 2014, 196, 3562-3570.	2.2	49
77	Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. Journal of Membrane Science, 2014, 472, 251-260.	8.2	31
78	The Extremely Thermophilic Genus Caldicellulosiruptor: Physiological and Genomic Characteristics for Complex Carbohydrate Conversion to Molecular Hydrogen. Advances in Photosynthesis and Respiration, 2014, , 177-195.	1.0	5
79	Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Current Opinion in Biotechnology, 2013, 24, 376-384.	6.6	87
80	Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea. Journal of Biological Chemistry, 2013, 288, 4012-4022.	3.4	36
81	A thermophile under pressure: Transcriptional analysis of the response of Caldicellulosiruptor saccharolyticus to different H2 partial pressures. International Journal of Hydrogen Energy, 2013, 38, 1837-1849.	7.1	15
82	Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy and Environmental Science, 2013, 6, 2186.	30.8	75
83	Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5840-5845.	7.1	121
84	Stationary Phase and Nutrient Levels Trigger Transcription of a Genomic Locus Containing a Novel Peptide (TM1316) in the Hyperthermophilic Bacterium Thermotoga maritima. Applied and Environmental Microbiology, 2013, 79, 6637-6646.	3.1	1
85	S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus. Applied and Environmental Microbiology, 2012, 78, 768-777.	3.1	50
86	Hyperthermophilic Thermotoga Species Differ with Respect to Specific Carbohydrate Transporters and Glycoside Hydrolases. Applied and Environmental Microbiology, 2012, 78, 1978-1986.	3.1	37
87	Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) Convert (<i>S</i>) Tj ETQq1 1 0.784314 3-Hydroxypropionate/4-Hydroxybutyrate Cycle. Applied and Environmental Microbiology, 2012, 78,	rgBT /Overl 3.1	ock 10 Tf 50 24
88	Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic <i>Metallosphaera</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16702-16707.	7.1	76
89	Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass. Journal of Bacteriology, 2012, 194, 4015-4028.	2.2	96
90	Extreme thermophiles: moving beyond single-enzyme biocatalysis. Current Opinion in Chemical Engineering, 2012, 1, 363-372.	7.8	67

#	Article	IF	CITATIONS
91	Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Research, 2011, 39, 3240-3254.	14.5	103
92	Extremely Thermophilic Routes to Microbial Electrofuels. ACS Catalysis, 2011, 1, 1043-1050.	11.2	41
93	Starch selfâ€processing in transgenic sweet potato roots expressing a hyperthermophilic αâ€amylase. Biotechnology Progress, 2011, 27, 351-359.	2.6	18
94	Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium <i>Caldicellulosiruptor saccharolyticus</i> . Biotechnology and Bioengineering, 2011, 108, 1559-1569.	3.3	61
95	VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. Rna, 2011, 17, 1381-1392.	3.5	36
96	Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis , Caldicellulosiruptor kristjanssonii , Caldicellulosiruptor kronotskyensis , Caldicellulosiruptor owensensis , and Caldicellulosiruptor lactoaceticus. Journal of Bacteriology, 2011, 193, 1483-1484.	2.2	54
97	A novel α-d-galactosynthase from Thermotoga maritima converts β-d-galactopyranosyl azide to α-galacto-oligosaccharides. Glycobiology, 2011, 21, 448-456.	2.5	34
98	Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Analytical and Bioanalytical Chemistry, 2010, 398, 391-404.	3.7	10
99	Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2. Analytical and Bioanalytical Chemistry, 2010, 398, 377-389.	3.7	16
100	Nâ€ŧerminal fusion of a hyperthermophilic chitinâ€binding domain to xylose isomerase from <i>Thermotoga neapolitana</i> enhances kinetics and thermostability of both free and immobilized enzymes. Biotechnology Progress, 2010, 26, 993-1000.	2.6	16
101	Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> . Applied and Environmental Microbiology, 2010, 76, 2668-2672.	3.1	55
102	Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus <i>Caldicellulosiruptor</i> . Applied and Environmental Microbiology, 2010, 76, 8084-8092.	3.1	105
103	Physiological Versatility of the Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> Supported by Transcriptomic Analysis of Heterotrophic, Autotrophic, and Mixotrophic Growth. Applied and Environmental Microbiology, 2010, 76, 931-935.	3.1	70
104	The genus <i>Thermotoga</i> : recent developments. Environmental Technology (United Kingdom), 2010, 31, 1169-1181.	2.2	55
105	Carbohydrate Utilization Patterns for the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> Reveal Broad Growth Substrate Preferences. Applied and Environmental Microbiology, 2009, 75, 7718-7724.	3.1	98
106	Plant cell calciumâ€rich environment enhances thermostability of recombinantly produced αâ€amylase from the hyperthermophilic bacterium <i>Thermotoga maritime</i> . Biotechnology and Bioengineering, 2009, 104, 947-956.	3.3	7
107	Temperature, not LuxS, mediates Al-2 formation in hydrothermal habitats. FEMS Microbiology Ecology, 2009, 68, 173-181.	2.7	34
108	Role of vapBC toxin–antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Biochemical Society Transactions, 2009, 37, 123-126.	3.4	58

#	Article	IF	CITATIONS
109	Extremely thermophilic microorganisms for biomass conversion: status and prospects. Current Opinion in Biotechnology, 2008, 19, 210-217.	6.6	236
110	Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Current Opinion in Biotechnology, 2008, 19, 445-453.	6.6	52
111	Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metabolic Engineering, 2008, 10, 394-404.	7.0	80
112	<i>Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes</i> . Annals of the New York Academy of Sciences, 2008, 1125, 322-337.	3.8	58
113	Probing the stability of native and activated forms of α2-macroglobulin. International Journal of Biological Macromolecules, 2008, 42, 62-67.	7.5	7
114	Microwave Activation of Enzymatic Catalysis. Journal of the American Chemical Society, 2008, 130, 10048-10049.	13.7	103
115	Functional-Genomics-Based Identification and Characterization of Open Reading Frames Encoding α-Glucoside-Processing Enzymes in the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 2008, 74, 1281-1283.	3.1	38
116	Hydrogenomics of the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> . Applied and Environmental Microbiology, 2008, 74, 6720-6729.	3.1	142
117	Identification of Components of Electron Transport Chains in the Extremely Thermoacidophilic Crenarchaeon <i>Metallosphaera sedula</i> through Iron and Sulfur Compound Oxidation Transcriptomes. Applied and Environmental Microbiology, 2008, 74, 7723-7732.	3.1	109
118	The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> Provides Insights into Bioleaching-Associated Metabolism. Applied and Environmental Microbiology, 2008, 74, 682-692.	3.1	160
119	Responses of Wild-Type and Resistant Strains of the Hyperthermophilic Bacterium Thermotoga maritima to Chloramphenicol Challenge. Applied and Environmental Microbiology, 2007, 73, 5058-5065.	3.1	19
120	Role of the β1 Subunit in the Function and Stability of the 20S Proteasome in the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 2007, 189, 583-590.	2.2	20
121	Impact of Substrate Glycoside Linkage and Elemental Sulfur on Bioenergetics of and Hydrogen Production by the Hyperthermophilic Archaeon <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 2007, 73, 6842-6853.	3.1	37
122	Rheological Properties of Guar Galactomannan Solutions during Hydrolysis with Galactomannanase and α-Galactosidase Enzyme Mixtures. Biomacromolecules, 2007, 8, 949-956.	5.4	23
123	Biochemical Analysis ofThermotoga maritimaGH36 α-Galactosidase (TmGalA) Confirms the Mechanistic Commonality of Clan GH-D Glycoside Hydrolasesâ€. Biochemistry, 2007, 46, 3319-3330.	2.5	87
124	Microbial biochemistry, physiology, and biotechnology of hyperthermophilicThermotogaspecies. FEMS Microbiology Reviews, 2006, 30, 872-905.	8.6	108
125	Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 2006, 188, 2115-2125.	2.2	64
126	Colocation of Genes Encoding a tRNA-mRNA Hybrid and a Putative Signaling Peptide on Complementary Strands in the Genome of the Hyperthermophilic Bacterium Thermotoga maritima. Journal of Bacteriology, 2006, 188, 6802-6807.	2.2	10

#	Article	IF	CITATIONS
127	The Thermotoga maritima Phenotype Is Impacted by Syntrophic Interaction with Methanococcus jannaschii in Hyperthermophilic Coculture. Applied and Environmental Microbiology, 2006, 72, 811-818.	3.1	59
128	Dynamic Metabolic Adjustments and Genome Plasticity Are Implicated in the Heat Shock Response of the Extremely Thermoacidophilic Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2006, 188, 4553-4559.	2.2	68
129	Global analysis of carbohydrate utilization by <i>Lactobacillus acidophilus</i> using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3816-3821.	7.1	185
130	Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. FEBS Journal, 2005, 272, 1454-1464.	4.7	33
131	Genome-Wide Transcriptional Variation within and between Steady States for Continuous Growth of the Hyperthermophile Thermotoga Maritima. Applied and Environmental Microbiology, 2005, 71, 5572-5576.	3.1	15
132	An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in theHyperthermophilic Bacterium Thermotoga maritima. Journal of Bacteriology, 2005, 187, 7267-7282.	2.2	75
133	Denaturation and Aggregation of Three α-Lactalbumin Preparations at Neutral pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3182-3190.	5.2	75
134	Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genetics and Biology, 2005, 42, 506-518.	2.1	79
135	Transcriptional Analysis of Biofilm Formation Processes in the Anaerobic, Hyperthermophilic Bacterium Thermotoga maritima. Applied and Environmental Microbiology, 2004, 70, 6098-6112.	3.1	79
136	Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Molecular Microbiology, 2004, 55, 664-674.	2.5	89
137	Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles, 2004, 8, 209-217.	2.3	37
138	Strategic biocatalysis with hyperthermophilic enzymes. Green Chemistry, 2004, 6, 459.	9.0	33
139	Significance of polysaccharides in microbial physiology and the ecology of hydrothermal vent environments. Geophysical Monograph Series, 2004, , 213-226.	0.1	5
140	Microbial ecology of hydrothermal biotypes. , 2004, , .		0
141	Functional genomics-based studies of the microbial ecology of hyperthermophilic micro-organisms. Biochemical Society Transactions, 2004, 32, 188-192.	3.4	5
142	Strategic Selection of Hyperthermophilic Esterases for Resolution of 2-Arylpropionic Esters. Biotechnology Progress, 2003, 19, 1410-1416.	2.6	20
143	Growth of Hyperthermophilic Archaeon Pyrococcus furiosus on Chitin Involves Two Family 18 Chitinases. Applied and Environmental Microbiology, 2003, 69, 3119-3128.	3.1	85
144	Heat Shock Response by the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 2003, 69, 2365-2371.	3.1	100

#	Article	IF	CITATIONS
145	Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima. Journal of Biological Chemistry, 2003, 278, 7540-7552.	3.4	117
146	Regulation of Endo-Acting Glycosyl Hydrolases in the Hyperthermophilic Bacterium Thermotoga maritima Grown on Glucan- and Mannan-Based Polysaccharides. Applied and Environmental Microbiology, 2002, 68, 545-554.	3.1	102
147	Enzymatic Modification of Guar Solutions. , 2002, , 41-49.		3
148	Enantiomeric Resolution of 2-Aryl Propionic Esters with Hyperthermophilic and Mesophilic Esterases:Â Contrasting Thermodynamic Mechanisms. Journal of the American Chemical Society, 2002, 124, 8190-8191.	13.7	20
149	Biochemical characterization ofThermotoga maritimaendoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Letters, 2002, 531, 375-380.	2.8	54
150	Proteolysis in hyperthermophilic microorganisms. Archaea, 2002, 1, 63-74.	2.3	49
151	Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases fromStreptomyces murinus and two hyperthermophilicThermotoga species. Biotechnology and Bioengineering, 2002, 80, 185-194.	3.3	52
152	Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeonSulfolobus solfataricus P1. Biotechnology and Bioengineering, 2002, 80, 784-793.	3.3	19
153	αa-D-Galactosidases from Thermotoga species. Methods in Enzymology, 2001, 330, 246-260.	1.0	21
154	Homomultimeric protease and putative bacteriocin homolog from Thermotoga maritima. Methods in Enzymology, 2001, 330, 455-460.	1.0	5
155	α-Glucosidase from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 260-269.	1.0	19
156	β-Mannanases from Thermotoga species. Methods in Enzymology, 2001, 330, 224-238.	1.0	11
157	Xylose isomerases from Thermotoga. Methods in Enzymology, 2001, 330, 215-224.	1.0	6
158	Continuous cultivation of hyperthermophiles. Methods in Enzymology, 2001, 330, 31-40.	1.0	8
159	β-Mannosidase from Thermotoga species. Methods in Enzymology, 2001, 330, 238-246.	1.0	18
160	β-Endoglucanase from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 346-354.	1.0	10
161	Protease I from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 403-413.	1.0	10
162	Bivalent cations and amino-acid composition contribute to the thermostability ofBacillus licheniformisxylose isomerase. FEBS Journal, 2001, 268, 6291-6301.	0.2	54

#	Article	IF	CITATIONS
163	Galactomannanases Man2 and Man5 fromThermotogaspecies: Growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnology and Bioengineering, 2001, 75, 322-333.	3.3	53
164	Carboxylesterase from Sulfolobus solfataricus P1. Methods in Enzymology, 2001, 330, 461-471.	1.0	17
165	Characterization of extremely thermostable enzymatic breakers (α-1,6-galactosidase and β-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum. , 2000, 52, 332-339.		63
166	Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeonThermococcus litoralis and bacteriumThermotoga maritima. Biotechnology and Bioengineering, 2000, 69, 537-547.	3.3	94
167	Biocatalysis and biotransformation: Editorial overview. Current Opinion in Chemical Biology, 1999, 3, 9-10.	6.1	о
168	Synergistic interactions among ?-laminarinase, ?-1,4-glucanase, and ?-glucosidase from the hyperthermophilic archaeonPyrococcus furiosus during hydrolysis of ?-1,4-, ?-1,3-, and mixed-linked polysaccharides. Biotechnology and Bioengineering, 1999, 66, 51-60.	3.3	28
169	Influence of polymolecular events on inactivation behavior of xylose isomerase fromThermotoga neapolitana 5068. , 1999, 62, 509-517.		10
170	Rheology and Molecular Weight Changes during Enzymatic Degradation of a Water-Soluble Polymer. Macromolecules, 1999, 32, 294-300.	4.8	78
171	Relationship between Glycosyl Hydrolase Inventory and Growth Physiology of the Hyperthermophile Pyrococcus furiosus on Carbohydrate-Based Media. Applied and Environmental Microbiology, 1999, 65, 893-897.	3.1	35
172	An Endoglucanase, EglA, from the Hyperthermophilic Archaeon <i>Pyrococcus furiosus</i> Hydrolyzes β-1,4 Bonds in Mixed-Linkage (1→3),(1→4)-β- <scp>d</scp> -Glucans and Cellulose. Journal of Bacteriology, 1999, 181, 284-290.	2.2	127
173	Finding and using hyperthermophilic enzymes. Trends in Biotechnology, 1998, 16, 329-332.	9.3	180
174	Isolation and Characterization of Thermococcus barossii, sp. nov., a Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent Flange Formation. Systematic and Applied Microbiology, 1998, 21, 40-49.	2.8	40
175	Purification and Functional Characterization of a Chaperone from Methanococcus jannaschii. Systematic and Applied Microbiology, 1998, 21, 173-178.	2.8	18
176	Biooxidation capacity of the extremely thermoacidophilic archaeonMetallosphaera sedula under bioenergetic challenge. , 1998, 58, 617-624.		22
177	Glycosyl hydrolases from hyperthermophilic microorganisms. Current Opinion in Biotechnology, 1998, 9, 141-145.	6.6	48
178	Homomultimeric protease in the hyperthermophilic bacteriumThermotoga maritimahas structural and amino acid sequence homology to bacteriocins in mesophilic bacteria. FEBS Letters, 1998, 440, 393-398.	2.8	30
179	The Family 1 β-Glucosidases fromPyrococcus furiosusandAgrobacterium faecalisShare a Common Catalytic Mechanismâ€. Biochemistry, 1998, 37, 17170-17178.	2.5	59
180	Thermotoga neapolitana Homotetrameric Xylose Isomerase Is Expressed as a Catalytically Active and Thermostable Dimer in Escherichia coli. Applied and Environmental Microbiology, 1998, 64, 2357-2360.	3.1	25

#	Article	IF	CITATIONS
181	Viscosity Reduction Of Hydraulic Fracturing Fluids Through Enzymatic Hydrolysis. SPE Journal, 1997, 2, 204-212.	3.1	12
182	Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. , 1997, 56, 268-278.		38
183	Purification and Characterization of a Proteasome from the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 1997, 63, 1160-1164.	3.1	37
184	Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (PfpI) from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 1996, 178, 2605-2612.	2.2	96
185	Comparison of a β-Glucosidase and a β-Mannosidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1996, 271, 23749-23755.	3.4	116
186	Proteases and Glycosyl Hydrolases from Hyperthermophilic Microorganisms. Advances in Protein Chemistry, 1996, 48, 271-310.	4.4	28
187	Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Applied and Environmental Microbiology, 1996, 62, 4478-4485.	3.1	131
188	Extremozymes: Expanding the Limits of Biocatalysis. Nature Biotechnology, 1995, 13, 662-668.	17.5	154
189	ENZYMES FROM MICROORGANISMS IN EXTREME ENVIRONMENTS. Chemical & Engineering News, 1995, 73, 32-42.	0.1	107
190	xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Applied and Environmental Microbiology, 1995, 61, 1867-1875.	3.1	104
191	Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses. Applied and Environmental Microbiology, 1995, 61, 2314-2321.	3.1	70
192	Metabolism in hyperthermophilic microorganisms. Antonie Van Leeuwenhoek, 1994, 66, 247-270.	1.7	73
193	Thermostability and thermoactivity of enzymes from hyperthermophilic archaea. Bioorganic and Medicinal Chemistry, 1994, 2, 659-667.	3.0	26
194	Extremely Thermophilic Microorganisms. Annals of the New York Academy of Sciences, 1994, 745, 409-425.	3.8	10
195	Bioenergetics of the metal/sulfur-oxidizing extreme thermoacidophile, Metallosphaera sedula. Fuel, 1993, 72, 1619-1624.	6.4	18
196	Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacterium,Thermotoga maritima. Biotechnology and Bioengineering, 1993, 41, 878-886.	3.3	100
197	Enzymes from high-temperature microorganisms. Current Opinion in Biotechnology, 1993, 4, 188-192.	6.6	10
198	Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic archaeon. Archives of Microbiology, 1993, 159, 380-385.	2.2	31

#	Article	IF	CITATIONS
199	Regulation of ribosomal RNA transcription by growth rate of the hyperthermophilic Archaeon,Pyrococcus furiosus. FEMS Microbiology Letters, 1993, 111, 159-164.	1.8	15
200	Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 1993, 175, 1823-1830.	2.2	123
201	Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5341-5344.	7.1	187
202	Characterization of Amylolytic Enzymes, Having Both α-1,4 and α-1,6 Hydrolytic Activity, from the Thermophilic Archaea <i>Pyrococcus furiosus</i> and <i>Thermococcus litoralis</i> . Applied and Environmental Microbiology, 1993, 59, 2614-2621.	3.1	162
203	Characterization of Enzymes from High-Temperature Bacteria. ACS Symposium Series, 1992, , 23-41.	0.5	11
204	Metabolic Enzymes from Sulfur-Dependent, Extremely Thermophilic Organisms. ACS Symposium Series, 1992, , 4-22.	0.5	7
205	Physiological and Biochemical Characteristics of Pyrococcus furiosus, a Hyperthermophilic Archaebacterium. Annals of the New York Academy of Sciences, 1992, 665, 309-319.	3.8	5
206	Biocatalysis Near and Above 100 °C. ACS Symposium Series, 1992, , 1-3.	0.5	6
207	Regulation of Proteolytic Activity in the Hyperthermophile <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 1992, 58, 1134-1141.	3.1	57
208	Chemical and microbiological problems associated with research on the biodesulfurization of coal. A review. Resources, Conservation and Recycling, 1991, 5, 183-193.	10.8	8
209	Coal sulphur transformations monitored by hyperthermophilic archaebacteria. Fuel, 1991, 70, 599-604.	6.4	3
210	Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. Journal of Bacteriology, 1990, 172, 3654-3660.	2.2	172
211	Hydrogen-Sulfur Autotrophy in the Hyperthermophilic Archaebacterium, <i>Pyrodictium brockii</i> . Biotechnology and Genetic Engineering Reviews, 1990, 8, 345-378.	6.2	4
212	The Hyperthermophilic Archaebacterium, Pyrococcus furiosus Annals of the New York Academy of Sciences, 1990, 589, 301-314.	3.8	22
213	Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 1990, 56, 1255-1262.	3.1	129
214	Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 1990, 56, 1985-1991.	3.1	127
215	Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Applied and Environmental Microbiology, 1990, 56, 1992-1998.	3.1	117
216	Probing coals for non-pyritic sulphur using sulphur-metabolizing mesophilic and hyperthermophilic bacteria. Fuel, 1989, 68, 1368-1375.	6.4	10

#	Article	IF	CITATIONS
217	Growth and gas production for hyperthermophilic archaebacterium,Pyrococcus furiosus. Biotechnology and Bioengineering, 1989, 34, 1050-1057.	3.3	41
218	Bioreactor operation for the production of exotoxin A byPseudomonas aeruginosa. Biotechnology and Bioengineering, 1989, 34, 1214-1220.	3.3	0
219	Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 138-141.	7.1	37
220	Cultivation Techniques for Hyperthermophilic Archaebacteria: Continuous Culture of <i>Pyrococcus furiosus</i> at Temperatures near 100�C. Applied and Environmental Microbiology, 1989, 55, 2086-2088.	3.1	54
221	Effect of hyperbaric oxygen and carbon dioxide on heterotrophic growth of the extreme thermophileSulfolobus acidocaldarius. Biotechnology and Bioengineering, 1988, 31, 750-754.	3.3	5
222	Destruction of Pharmaceutical and Biopharmaceutical Wastes by the Modar Supercritical Water Oxidation Process. Nature Biotechnology, 1988, 6, 1423-1427.	17.5	14
223	Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations. Biotechnology Progress, 1988, 4, 47-62.	2.6	66
224	Engineering considerations for growth of bacteria at temperatures around 100°C. Applied Biochemistry and Biotechnology, 1988, 18, 53-73.	2.9	10
225	Influence of hydrodynamics on physical and chemical gas absorption in packed columns. Industrial & Engineering Chemistry Research, 1988, 27, 636-642.	3.7	1
226	Effect of hydrogen and carbon dioxide partial pressures on growth and sulfide production of the extremely thermophilic archaebacteriumPyrodictium brockii. Biotechnology and Bioengineering, 1988, 32, 438-443.	3.3	13
227	Growth of Extremely Thermophilic Archaebacteria under Elevated Hyperbaric Conditions. Annals of the New York Academy of Sciences, 1987, 506, 51-66.	3.8	4
228	Effect of Culturing Conditions on the Production of Exotoxin A by Pseudomonas aeruginosa. Annals of the New York Academy of Sciences, 1987, 506, 663-668.	3.8	9
229	Growth of the extreme thermophileSulfolobus acidocaldarius in a hyperbaric helium bioreactor. Biotechnology and Bioengineering, 1987, 29, 1066-1074.	3.3	14
230	Use of epifluorescence microscopy for characterizing the activity ofThiobacillus Ferrooxidans on iron pyrite. Biotechnology and Bioengineering, 1987, 30, 138-146.	3.3	31
231	Sulfur Reduction by the Extremely Thermophilic Archaebacterium <i>Pyrodictium occultum</i> . Applied and Environmental Microbiology, 1987, 53, 1690-1693.	3.1	12
232	Development of a defined medium and two-step culturing method for improved exotoxin A yields from Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1987, 53, 2013-2020.	3.1	31
233	Experimental methods for measuring static liquid holdup in packed columns. AICHE Journal, 1986, 32, 1920-1923.	3.6	30
234	Microbiological Metal Transformations: Biotechnological Applications and Potential. Biotechnology Progress, 1986, 2, 1-15.	2.6	41

#	Article	IF	CITATIONS
235	Hollow Fiber Microfiltration Methods for Recovery of Rat Basophilic Leukemia Cells (RBL—2H3) From Tissue Culture Media. Biotechnology Progress, 1986, 2, 230-233.	2.6	9
236	CONDITIONING COAL GAS WITH REFRIGERATED METHANOL IN A SYSTEM OF PACKED COLUMNS. Chemical Engineering Communications, 1985, 34, 27-35.	2.6	0
237	Design of packed, adiabatic absorbers: physical absorption of acid gases in methanol. Industrial & Engineering Chemistry Process Design and Development, 1984, 23, 102-109.	0.6	16
238	Electrochemical regeneration of NAD+on carbon electrodes. Biotechnology and Bioengineering, 1977, 19, 1215-1218.	3.3	23
239	Steroids and oxygen solubility. Steroids, 1976, 28, 307-310.	1.8	1
240	Transcriptomics, Proteomics, and Structural Genomics of Pyrococcus Furiosus. , 0, , 239-246.		0
241	Functional Genomics. , 0, , 434-462.		1