Robert M Kelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2700770/publications.pdf

Version: 2024-02-01

241 papers 10,737 citations

23544 58 h-index 49868 87 g-index

252 all docs

252 docs citations

times ranked

252

7734 citing authors

#	Article	IF	CITATIONS
1	A genomic catalog of Earth's microbiomes. Nature Biotechnology, 2021, 39, 499-509.	9.4	457
2	Extremely thermophilic microorganisms for biomass conversion: status and prospects. Current Opinion in Biotechnology, 2008, 19, 210-217.	3.3	236
3	Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5341-5344.	3.3	187
4	Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3816-3821.	3.3	185
5	Finding and using hyperthermophilic enzymes. Trends in Biotechnology, 1998, 16, 329-332.	4.9	180
6	Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. Journal of Bacteriology, 1990, 172, 3654-3660.	1.0	172
7	Characterization of Amylolytic Enzymes, Having Both $\hat{l}\pm 1,4$ and $\hat{l}\pm 1,6$ Hydrolytic Activity, from the Thermophilic Archaea <i>Pyrococcus furiosus</i> and <i>Thermococcus litoralis</i> Applied and Environmental Microbiology, 1993, 59, 2614-2621.	1.4	162
8	The Genome Sequence of the Metal-Mobilizing, Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> Provides Insights into Bioleaching-Associated Metabolism. Applied and Environmental Microbiology, 2008, 74, 682-692.	1.4	160
9	Extremozymes: Expanding the Limits of Biocatalysis. Nature Biotechnology, 1995, 13, 662-668.	9.4	154
10	Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 2015, 6, 1209.	1.5	147
11	Thermophilic lignocellulose deconstruction. FEMS Microbiology Reviews, 2014, 38, 393-448.	3.9	145
12	Hydrogenomics of the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> . Applied and Environmental Microbiology, 2008, 74, 6720-6729.	1.4	142
13	Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Applied and Environmental Microbiology, 1996, 62, 4478-4485.	1.4	131
14	Role of Polysulfides in Reduction of Elemental Sulfur by the Hyperthermophilic Archaebacterium <i>Pyrococcus furiosus </i> . Applied and Environmental Microbiology, 1990, 56, 1255-1262.	1.4	129
15	Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 1990, 56, 1985-1991.	1.4	127
16	An Endoglucanase, EglA, from the Hyperthermophilic Archaeon <i>Pyrococcus furiosus</i> Hydrolyzes β-1,4 Bonds in Mixed-Linkage (1→3),(1→4)-β- <scp>d</scp> -Glucans and Cellulose. Journal of Bacteriology, 1999, 181, 284-290.	1.0	127
17	Bioenergetics of sulfur reduction in the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 1993, 175, 1823-1830.	1.0	123
18	Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5840-5845.	3.3	121

#	Article	IF	Citations
19	Carbohydrate-induced Differential Gene Expression Patterns in the Hyperthermophilic Bacterium Thermotoga maritima. Journal of Biological Chemistry, 2003, 278, 7540-7552.	1.6	117
20	Characterization of sodium dodecyl sulfate-resistant proteolytic activity in the hyperthermophilic archaebacterium Pyrococcus furiosus. Applied and Environmental Microbiology, 1990, 56, 1992-1998.	1.4	117
21	Comparison of a \hat{i}^2 -Glucosidase and a \hat{i}^2 -Mannosidase from the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 1996, 271, 23749-23755.	1.6	116
22	Identification of Components of Electron Transport Chains in the Extremely Thermoacidophilic Crenarchaeon <i>Metallosphaera sedula</i> through Iron and Sulfur Compound Oxidation Transcriptomes. Applied and Environmental Microbiology, 2008, 74, 7723-7732.	1.4	109
23	Microbial biochemistry, physiology, and biotechnology of hyperthermophilicThermotogaspecies. FEMS Microbiology Reviews, 2006, 30, 872-905.	3.9	108
24	ENZYMES FROM MICROORGANISMS IN EXTREME ENVIRONMENTS. Chemical & Engineering News, 1995, 73, 32-42.	0.2	107
25	Phylogenetic, Microbiological, and Glycoside Hydrolase Diversities within the Extremely Thermophilic, Plant Biomass-Degrading Genus <i>Caldicellulosiruptor</i> Microbiology, 2010, 76, 8084-8092.	1.4	105
26	xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Applied and Environmental Microbiology, 1995, 61, 1867-1875.	1.4	104
27	Microwave Activation of Enzymatic Catalysis. Journal of the American Chemical Society, 2008, 130, 10048-10049.	6.6	103
28	Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Research, 2011, 39, 3240-3254.	6.5	103
29	Regulation of Endo-Acting Glycosyl Hydrolases in the Hyperthermophilic Bacterium Thermotoga maritima Grown on Glucan- and Mannan-Based Polysaccharides. Applied and Environmental Microbiology, 2002, 68, 545-554.	1.4	102
30	Purification and characterization of a highly thermostable glucose isomerase produced by the extremely thermophilic eubacterium, Thermotoga maritima. Biotechnology and Bioengineering, 1993, 41, 878-886.	1.7	100
31	Heat Shock Response by the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 2003, 69, 2365-2371.	1.4	100
32	Carbohydrate Utilization Patterns for the Extremely Thermophilic Bacterium <i>Caldicellulosiruptor saccharolyticus</i> Reveal Broad Growth Substrate Preferences. Applied and Environmental Microbiology, 2009, 75, 7718-7724.	1.4	98
33	Sequence, expression in Escherichia coli, and analysis of the gene encoding a novel intracellular protease (Pfpl) from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 1996, 178, 2605-2612.	1.0	96
34	Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass. Journal of Bacteriology, 2012, 194, 4015-4028.	1.0	96
35	Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeonThermococcus litoralis and bacteriumThermotoga maritima. Biotechnology and Bioengineering, 2000, 69, 537-547.	1.7	94
36	Population density-dependent regulation of exopolysaccharide formation in the hyperthermophilic bacterium Thermotoga maritima. Molecular Microbiology, 2004, 55, 664-674.	1.2	89

3

#	Article	IF	CITATIONS
37	Biochemical Analysis ofThermotoga maritimaGH36 α-Galactosidase (TmGalA) Confirms the Mechanistic Commonality of Clan GH-D Glycoside Hydrolasesâ€. Biochemistry, 2007, 46, 3319-3330.	1.2	87
38	Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals. Current Opinion in Biotechnology, 2013, 24, 376-384.	3.3	87
39	Single gene insertion drives bioalcohol production by a thermophilic archaeon. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17618-17623.	3.3	86
40	Growth of Hyperthermophilic Archaeon Pyrococcus furiosus on Chitin Involves Two Family 18 Chitinases. Applied and Environmental Microbiology, 2003, 69, 3119-3128.	1.4	85
41	Hydrogenesis in hyperthermophilic microorganisms: Implications for biofuels. Metabolic Engineering, 2008, 10, 394-404.	3.6	80
42	Transcriptional Analysis of Biofilm Formation Processes in the Anaerobic, Hyperthermophilic Bacterium Thermotoga maritima. Applied and Environmental Microbiology, 2004, 70, 6098-6112.	1.4	79
43	Aflatoxin conducive and non-conducive growth conditions reveal new gene associations with aflatoxin production. Fungal Genetics and Biology, 2005, 42, 506-518.	0.9	79
44	Rheology and Molecular Weight Changes during Enzymatic Degradation of a Water-Soluble Polymer. Macromolecules, 1999, 32, 294-300.	2.2	78
45	Uranium extremophily is an adaptive, rather than intrinsic, feature for extremely thermoacidophilic <i>Metallosphaera</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16702-16707.	3.3	76
46	An Expression-Driven Approach to the Prediction of Carbohydrate Transport and Utilization Regulons in the Hyperthermophilic Bacterium Thermotoga maritima. Journal of Bacteriology, 2005, 187, 7267-7282.	1.0	75
47	Denaturation and Aggregation of Three \hat{l} ±-Lactalbumin Preparations at Neutral pH. Journal of Agricultural and Food Chemistry, 2005, 53, 3182-3190.	2.4	7 5
48	Carbohydrate and lignin are simultaneously solubilized from unpretreated switchgrass by microbial action at high temperature. Energy and Environmental Science, 2013, 6, 2186.	15.6	75
49	Metabolism in hyperthermophilic microorganisms. Antonie Van Leeuwenhoek, 1994, 66, 247-270.	0.7	73
50	The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. Minerals (Basel, Switzerland), 2015, 5, 397-451.	0.8	73
51	Physiological Versatility of the Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> Supported by Transcriptomic Analysis of Heterotrophic, Autotrophic, and Mixotrophic Growth. Applied and Environmental Microbiology, 2010, 76, 931-935.	1.4	70
52	Bioenergetic Response of the Extreme Thermoacidophile Metallosphaera sedula to Thermal and Nutritional Stresses. Applied and Environmental Microbiology, 1995, 61, 2314-2321.	1.4	70
53	Dynamic Metabolic Adjustments and Genome Plasticity Are Implicated in the Heat Shock Response of the Extremely Thermoacidophilic Archaeon Sulfolobus solfataricus. Journal of Bacteriology, 2006, 188, 4553-4559.	1.0	68
54	Extreme thermophiles: moving beyond single-enzyme biocatalysis. Current Opinion in Chemical Engineering, 2012, 1, 363-372.	3.8	67

#	Article	IF	CITATIONS
55	Biotechnology of extremely thermophilic archaea. FEMS Microbiology Reviews, 2018, 42, 543-578.	3.9	67
56	Extremely Thermophilic Archaebacteria: Biological and Engineering Considerations. Biotechnology Progress, 1988, 4, 47-62.	1.3	66
57	Transcriptional and Biochemical Analysis of Starch Metabolism in the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 2006, 188, 2115-2125.	1.0	64
58	Characterization of extremely thermostable enzymatic breakers (\hat{l} ±-1,6-galactosidase and \hat{l} 2-1,4-mannanase) from the hyperthermophilic bacterium Thermotoga neapolitana 5068 for hydrolysis of guar gum., 2000, 52, 332-339.		63
59	Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium <i>Caldicellulosiruptor saccharolyticus</i> Biotechnology and Bioengineering, 2011, 108, 1559-1569.	1.7	61
60	The Family 1 $\hat{1}^2$ -Glucosidases fromPyrococcus furiosusandAgrobacterium faecalisShare a Common Catalytic Mechanism \hat{a} . Biochemistry, 1998, 37, 17170-17178.	1.2	59
61	The Thermotoga maritima Phenotype Is Impacted by Syntrophic Interaction with Methanococcus jannaschii in Hyperthermophilic Coculture. Applied and Environmental Microbiology, 2006, 72, 811-818.	1.4	59
62	i Polysaccharide Degradation and Synthesis by Extremely Thermophilic Anaerobes i . Annals of the New York Academy of Sciences, 2008, 1125, 322-337.	1.8	58
63	Role of vapBC toxin–antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Biochemical Society Transactions, 2009, 37, 123-126.	1.6	58
64	Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock―Reveal Generic and Specific Metal Responses. Applied and Environmental Microbiology, 2016, 82, 4613-4627.	1.4	58
65	Regulation of Proteolytic Activity in the Hyperthermophile <i>Pyrococcus furiosus</i> . Applied and Environmental Microbiology, 1992, 58, 1134-1141.	1.4	57
66	Impact of Molecular Hydrogen on Chalcopyrite Bioleaching by the Extremely Thermoacidophilic Archaeon <i>Metallosphaera sedula</i> . Applied and Environmental Microbiology, 2010, 76, 2668-2672.	1.4	55
67	The genus <i>Thermotoga</i> : recent developments. Environmental Technology (United Kingdom), 2010, 31, 1169-1181.	1.2	55
68	Cross-linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches to Improve Enzyme Performance. ACS Applied Materials & Enzyme Performance. ACS Applied Materials & Enzyme Performance.	4.0	55
69	Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformisxylose isomerase. FEBS Journal, 2001, 268, 6291-6301.	0.2	54
70	Biochemical characterization of Thermotoga maritimaendoglucanase Cel74 with and without a carbohydrate binding module (CBM). FEBS Letters, 2002, 531, 375-380.	1.3	54
71	Complete Genome Sequences for the Anaerobic, Extremely Thermophilic Plant Biomass-Degrading Bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensensis, and Caldicellulosiruptor lactoaceticus, lournal of Bacteriology, 2011, 193, 1483-1484.	1.0	54
72	Cultivation Techniques for Hyperthermophilic Archaebacteria: Continuous Culture of <i>Pyrococcus furiosus</i> at Temperatures near 100�. Applied and Environmental Microbiology, 1989, 55, 2086-2088.	1.4	54

#	Article	IF	CITATIONS
73	Galactomannanases Man2 and Man5 fromThermotogaspecies: Growth physiology on galactomannans, gene sequence analysis, and biochemical properties of recombinant enzymes. Biotechnology and Bioengineering, 2001, 75, 322-333.	1.7	53
74	Glucose-to-fructose conversion at high temperatures with xylose (glucose) isomerases fromStreptomyces murinus and two hyperthermophilicThermotoga species. Biotechnology and Bioengineering, 2002, 80, 185-194.	1.7	52
75	Life in hot acid: pathway analyses in extremely thermoacidophilic archaea. Current Opinion in Biotechnology, 2008, 19, 445-453.	3.3	52
76	A hybrid synthetic pathway for butanol production by a hyperthermophilic microbe. Metabolic Engineering, 2015, 27, 101-106.	3.6	51
77	S-Layer Homology Domain Proteins Csac_0678 and Csac_2722 Are Implicated in Plant Polysaccharide Deconstruction by the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus. Applied and Environmental Microbiology, 2012, 78, 768-777.	1.4	50
78	Proteolysis in hyperthermophilic microorganisms. Archaea, 2002, 1, 63-74.	2.3	49
79	Role of an Archaeal PitA Transporter in the Copper and Arsenic Resistance of Metallosphaera sedula, an Extreme Thermoacidophile. Journal of Bacteriology, 2014, 196, 3562-3570.	1.0	49
80	Glycosyl hydrolases from hyperthermophilic microorganisms. Current Opinion in Biotechnology, 1998, 9, 141-145.	3.3	48
81	Diversity of bacteria and archaea from two shallow marine hydrothermal vents from Vulcano Island. Extremophiles, 2017, 21, 733-742.	0.9	48
82	Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species. Journal of Biological Chemistry, 2016, 291, 6732-6747.	1.6	44
83	Microbiological Metal Transformations: Biotechnological Applications and Potential. Biotechnology Progress, 1986, 2, 1-15.	1.3	41
84	Growth and gas production for hyperthermophilic archaebacterium, Pyrococcus furiosus. Biotechnology and Bioengineering, 1989, 34, 1050-1057.	1.7	41
85	Extremely Thermophilic Routes to Microbial Electrofuels. ACS Catalysis, 2011, 1, 1043-1050.	5.5	41
86	A Highly Thermostable Kanamycin Resistance Marker Expands the Tool Kit for Genetic Manipulation of Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2016, 82, 4421-4428.	1.4	41
87	Isolation and Characterization of Thermococcus barossii, sp. nov., a Hyperthermophilic Archaeon Isolated from a Hydrothermal Vent Flange Formation. Systematic and Applied Microbiology, 1998, 21, 40-49.	1.2	40
88	Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex. Journal of Biological Chemistry, 2014, 289, 2873-2879.	1.6	40
89	Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metabolic Engineering Communications, 2018, 7, e00073.	1.9	40
90	Uncoupling Fermentative Synthesis of Molecular Hydrogen from Biomass Formation in Thermotoga maritima. Applied and Environmental Microbiology, 2018, 84, .	1.4	40

#	Article	IF	Citations
91	Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures., 1997, 56, 268-278.		38
92	Functional-Genomics-Based Identification and Characterization of Open Reading Frames Encoding α-Glucoside-Processing Enzymes in the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 2008, 74, 1281-1283.	1.4	38
93	Heterologous Production of an Energy-Conserving Carbon Monoxide Dehydrogenase Complex in the Hyperthermophile Pyrococcus furiosus. Frontiers in Microbiology, 2016, 7, 29.	1.5	38
94	Characterization of hydrogen-uptake activity in the hyperthermophile Pyrodictium brockii Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 138-141.	3.3	37
95	Transcriptional analysis of dynamic heat-shock response by the hyperthermophilic bacterium Thermotoga maritima. Extremophiles, 2004, 8, 209-217.	0.9	37
96	Impact of Substrate Glycoside Linkage and Elemental Sulfur on Bioenergetics of and Hydrogen Production by the Hyperthermophilic Archaeon <i>Pyrococcus furiosus</i> Environmental Microbiology, 2007, 73, 6842-6853.	1.4	37
97	Hyperthermophilic Thermotoga Species Differ with Respect to Specific Carbohydrate Transporters and Glycoside Hydrolases. Applied and Environmental Microbiology, 2012, 78, 1978-1986.	1.4	37
98	Functional Analysis of the Glucan Degradation Locus in Caldicellulosiruptor bescii Reveals Essential Roles of Component Glycoside Hydrolases in Plant Biomass Deconstruction. Applied and Environmental Microbiology, 2017, 83, .	1.4	37
99	Purification and Characterization of a Proteasome from the Hyperthermophilic Archaeon Pyrococcus furiosus. Applied and Environmental Microbiology, 1997, 63, 1160-1164.	1.4	37
100	VapC6, a ribonucleolytic toxin regulates thermophilicity in the crenarchaeote Sulfolobus solfataricus. Rna, 2011, 17, 1381-1392.	1.6	36
101	Role of 4-Hydroxybutyrate-CoA Synthetase in the CO2 Fixation Cycle in Thermoacidophilic Archaea. Journal of Biological Chemistry, 2013, 288, 4012-4022.	1.6	36
102	Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Applied and Environmental Microbiology, 2015, 81, 7159-7170.	1.4	36
103	Relationship between Glycosyl Hydrolase Inventory and Growth Physiology of the Hyperthermophile Pyrococcus furiosus on Carbohydrate-Based Media. Applied and Environmental Microbiology, 1999, 65, 893-897.	1.4	35
104	Temperature, not LuxS, mediates Al-2 formation in hydrothermal habitats. FEMS Microbiology Ecology, 2009, 68, 173-181.	1.3	34
105	A novel \hat{l} ±-d-galactosynthase from Thermotoga maritima converts \hat{l}^2 -d-galactopyranosyl azide to \hat{l} ±-galacto-oligosaccharides. Glycobiology, 2011, 21, 448-456.	1.3	34
106	Extreme thermophiles as emerging metabolic engineering platforms. Current Opinion in Biotechnology, 2019, 59, 55-64.	3.3	34
107	Strategic biocatalysis with hyperthermophilic enzymes. Green Chemistry, 2004, 6, 459.	4.6	33
108	Influence of divalent cations on the structural thermostability and thermal inactivation kinetics of class II xylose isomerases. FEBS Journal, 2005, 272, 1454-1464.	2.2	33

#	Article	IF	Citations
109	Genus-Wide Assessment of Lignocellulose Utilization in the Extremely Thermophilic Genus Caldicellulosiruptor by Genomic, Pangenomic, and Metagenomic Analyses. Applied and Environmental Microbiology, 2018, 84, .	1.4	33
110	Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1377.	6.6	32
111	Use of epifluorescence microscopy for characterizing the activity of Thiobacillus Ferrooxidans on iron pyrite. Biotechnology and Bioengineering, 1987, 30, 138-146.	1.7	31
112	Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic archaeon. Archives of Microbiology, 1993, 159, 380-385.	1.0	31
113	Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. Journal of Membrane Science, 2014, 472, 251-260.	4.1	31
114	Development of a defined medium and two-step culturing method for improved exotoxin A yields from Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1987, 53, 2013-2020.	1.4	31
115	Experimental methods for measuring static liquid holdup in packed columns. AICHE Journal, 1986, 32, 1920-1923.	1.8	30
116	Homomultimeric protease in the hyperthermophilic bacteriumThermotoga maritimahas structural and amino acid sequence homology to bacteriocins in mesophilic bacteria. FEBS Letters, 1998, 440, 393-398.	1.3	30
117	Proteases and Glycosyl Hydrolases from Hyperthermophilic Microorganisms. Advances in Protein Chemistry, 1996, 48, 271-310.	4.4	28
118	Synergistic interactions among ?-laminarinase, ?-1,4-glucanase, and ?-glucosidase from the hyperthermophilic archaeonPyrococcus furiosus during hydrolysis of ?-1,4-, ?-1,3-, and mixed-linked polysaccharides. Biotechnology and Bioengineering, 1999, 66, 51-60.	1.7	28
119	Conversion of 4-Hydroxybutyrate to Acetyl Coenzyme A and Its Anapleurosis in the Metallosphaera sedula 3-Hydroxypropionate/4-Hydroxybutyrate Carbon Fixation Pathway. Applied and Environmental Microbiology, 2014, 80, 2536-2545.	1.4	28
120	Discrete and Structurally Unique Proteins (TÄpirins) Mediate Attachment of Extremely Thermophilic Caldicellulosiruptor Species to Cellulose. Journal of Biological Chemistry, 2015, 290, 10645-10656.	1.6	28
121	Deletion of acetyl-CoA synthetases I and II increases production of 3-hydroxypropionate by the metabolically-engineered hyperthermophile Pyrococcus furiosus. Metabolic Engineering, 2014, 22, 83-88.	3.6	27
122	Ethanol production by the hyperthermophilic archaeon <i>Pyrococcus furiosus</i> by expression of bacterial bifunctional alcohol dehydrogenases. Microbial Biotechnology, 2017, 10, 1535-1545.	2.0	27
123	Thermostability and thermoactivity of enzymes from hyperthermophilic archaea. Bioorganic and Medicinal Chemistry, 1994, 2, 659-667.	1.4	26
124	Reaction kinetic analysis of the 3-hydroxypropionate/4-hydroxybutyrate CO2 fixation cycle in extremely thermoacidophilic archaea. Metabolic Engineering, 2016, 38, 446-463.	3.6	26
125	A New Class of Tungsten-Containing Oxidoreductase in Caldicellulosiruptor, a Genus of Plant Biomass-Degrading Thermophilic Bacteria. Applied and Environmental Microbiology, 2015, 81, 7339-7347.	1.4	25
126	Thermotoga neapolitana Homotetrameric Xylose Isomerase Is Expressed as a Catalytically Active and Thermostable Dimer in Escherichia coli. Applied and Environmental Microbiology, 1998, 64, 2357-2360.	1.4	25

#	Article	IF	CITATIONS
	Epimerase (Msed_0639) and Mutase (Msed_0638 and Msed_2055) Convert (<i>S</i>) Tj ETQq1 1 0.784314	rgBT /Over	lock 10 Tf 50
127	3-Hydroxypropionate/4-Hydroxybutyrate Cycle. Applied and Environmental Microbiology, 2012, 78, 6194-6202.	1.4	24
128	Alcohol Selectivity in a Synthetic Thermophilic $\langle i \rangle n \langle i \rangle$ -Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes. Applied and Environmental Microbiology, 2015, 81, 7187-7200.	1.4	24
129	The biology of thermoacidophilic archaea from the order <i>Sulfolobales</i> . FEMS Microbiology Reviews, 2021, 45, .	3.9	24
130	Electrochemical regeneration of NAD+on carbon electrodes. Biotechnology and Bioengineering, 1977, 19, 1215-1218.	1.7	23
131	Rheological Properties of Guar Galactomannan Solutions during Hydrolysis with Galactomannanase and α-Galactosidase Enzyme Mixtures. Biomacromolecules, 2007, 8, 949-956.	2.6	23
132	Temperature-dependent acetoin production by Pyrococcus furiosus is catalyzed by a biosynthetic acetolactate synthase and its deletion improves ethanol production. Metabolic Engineering, 2016, 34, 71-79.	3.6	23
133	Extremely thermophilic energy metabolisms: biotechnological prospects. Current Opinion in Biotechnology, 2017, 45, 104-112.	3.3	23
134	The Hyperthermophilic Archaebacterium, Pyrococcus furiosus Annals of the New York Academy of Sciences, 1990, 589, 301-314.	1.8	22
135	Biooxidation capacity of the extremely thermoacidophilic archaeonMetallosphaera sedula under bioenergetic challenge. , 1998, 58, 617-624.		22
136	Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii. Nature Communications, 2019, 10, 3548.	5.8	22
137	αa-D-Galactosidases from Thermotoga species. Methods in Enzymology, 2001, 330, 246-260.	0.4	21
138	Bioprocessing analysis of <i>Pyrococcus furiosus</i> strains engineered for CO ₂ â€based 3â€hydroxypropionate production. Biotechnology and Bioengineering, 2015, 112, 1533-1543.	1.7	21
139	Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO ₂ incorporation into 3â€hydroxypropionate by metabolically engineered ⟨i⟩Pyrococcus furiosus⟨ i⟩. Biotechnology and Bioengineering, 2016, 113, 2652-2660.	1.7	21
140	Sequential processing with fermentative <i>Caldicellulosiruptor kronotskyensis</i> and chemolithoautotrophic <i>Cupriavidus necator</i> for converting rice straw and CO ₂ to polyhydroxybutyrate. Biotechnology and Bioengineering, 2018, 115, 1624-1629.	1.7	21
141	Native xylose-inducible promoter expands the genetic tools for the biomass-degrading, extremely thermophilic bacterium Caldicellulosiruptor bescii. Extremophiles, 2018, 22, 629-638.	0.9	21
142	The biology and biotechnology of the genus Caldicellulosiruptor: recent developments in †Caldi World†M. Extremophiles, 2020, 24, 1-15.	0.9	21
143	Enantiomeric Resolution of 2-Aryl Propionic Esters with Hyperthermophilic and Mesophilic Esterases:Â Contrasting Thermodynamic Mechanisms. Journal of the American Chemical Society, 2002, 124, 8190-8191.	6.6	20
144	Strategic Selection of Hyperthermophilic Esterases for Resolution of 2-Arylpropionic Esters. Biotechnology Progress, 2003, 19, 1410-1416.	1.3	20

#	Article	IF	Citations
145	Role of the \hat{I}^21 Subunit in the Function and Stability of the 20S Proteasome in the Hyperthermophilic Archaeon Pyrococcus furiosus. Journal of Bacteriology, 2007, 189, 583-590.	1.0	20
146	Life in hot acid: a genomeâ€based reassessment of the archaeal order <i>Sulfolobales</i> Environmental Microbiology, 2021, 23, 3568-3584.	1.8	20
147	α-Glucosidase from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 260-269.	0.4	19
148	Structural and catalytic response to temperature and cosolvents of carboxylesterase EST1 from the extremely thermoacidophilic archaeonSulfolobus solfataricus P1. Biotechnology and Bioengineering, 2002, 80, 784-793.	1.7	19
149	Responses of Wild-Type and Resistant Strains of the Hyperthermophilic Bacterium Thermotoga maritima to Chloramphenicol Challenge. Applied and Environmental Microbiology, 2007, 73, 5058-5065.	1.4	19
150	A mutant (†lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus, lacking flagella, has unusual growth physiology. Extremophiles, 2015, 19, 269-281.	0.9	19
151	Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic <i>Caldicellulosiruptor</i> species. AICHE Journal, 2018, 64, 4218-4228.	1.8	19
152	Determinants of sulphur chemolithoautotrophy in the extremely thermoacidophilicSulfolobales. Environmental Microbiology, 2019, 21, 3696-3710.	1.8	19
153	Bioenergetics of the metal/sulfur-oxidizing extreme thermoacidophile, Metallosphaera sedula. Fuel, 1993, 72, 1619-1624.	3.4	18
154	Purification and Functional Characterization of a Chaperone from Methanococcus jannaschii. Systematic and Applied Microbiology, 1998, 21, 173-178.	1.2	18
155	\hat{I}^2 -Mannosidase from Thermotoga species. Methods in Enzymology, 2001, 330, 238-246.	0.4	18
156	Starch selfâ€processing in transgenic sweet potato roots expressing a hyperthermophilic αâ€amylase. Biotechnology Progress, 2011, 27, 351-359.	1.3	18
157	The thermophilic biomass-degrading bacterium Caldicellulosiruptor bescii utilizes two enzymes to oxidize glyceraldehyde 3-phosphate during glycolysis. Journal of Biological Chemistry, 2019, 294, 9995-10005.	1.6	18
158	Carboxylesterase from Sulfolobus solfataricus P1. Methods in Enzymology, 2001, 330, 461-471.	0.4	17
159	Genome Stability in Engineered Strains of the Extremely Thermophilic Lignocellulose-Degrading Bacterium Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	1.4	17
160	Design of packed, adiabatic absorbers: physical absorption of acid gases in methanol. Industrial & Engineering Chemistry Process Design and Development, 1984, 23, 102-109.	0.6	16
161	Part I: characterization of the extracellular proteome of the extreme thermophile Caldicellulosiruptor saccharolyticus by GeLC-MS2. Analytical and Bioanalytical Chemistry, 2010, 398, 377-389.	1.9	16
162	Nâ€terminal fusion of a hyperthermophilic chitinâ€binding domain to xylose isomerase from <i>Thermotoga neapolitana</i> enhances kinetics and thermostability of both free and immobilized enzymes. Biotechnology Progress, 2010, 26, 993-1000.	1.3	16

#	Article	IF	CITATIONS
163	Two Distinct \hat{l}_{\pm} - $\langle scp \rangle l \langle scp \rangle$ -Arabinofuranosidases in Caldicellulosiruptor Species Drive Degradation of Arabinose-Based Polysaccharides. Applied and Environmental Microbiology, 2017, 83, .	1.4	16
164	Parsing in vivo and in vitro contributions to microcrystalline cellulose hydrolysis by multidomain glycoside hydrolases in the <i>Caldicellulosiruptor bescii</i> secretome. Biotechnology and Bioengineering, 2018, 115, 2426-2440.	1.7	16
165	Regulation of ribosomal RNA transcription by growth rate of the hyperthermophilic Archaeon, Pyrococcus furiosus. FEMS Microbiology Letters, 1993, 111, 159-164.	0.7	15
166	Genome-Wide Transcriptional Variation within and between Steady States for Continuous Growth of the Hyperthermophile Thermotoga Maritima. Applied and Environmental Microbiology, 2005, 71, 5572-5576.	1.4	15
167	A thermophile under pressure: Transcriptional analysis of the response of Caldicellulosiruptor saccharolyticus to different H2 partial pressures. International Journal of Hydrogen Energy, 2013, 38, 1837-1849.	3.8	15
168	Complete Genome Sequences of <i>Caldicellulosiruptor</i> sp. Strain Rt8.B8, <i>Caldicellulosiruptor</i> sp. Strain Wai35.B1, and $\hat{a} \in \mathbb{C}$ <i>Thermoanaerobacter cellulolyticus</i> $\hat{a} \in \mathbb{C}$ Genome Announcements, 2015, 3, .	0.8	15
169	Simultaneous biosynthesis of (R)-acetoin and ethylene glycol from D-xylose through in vitro metabolic engineering. Metabolic Engineering Communications, 2018, 7, e00074.	1.9	15
170	Metabolically engineered <i>Caldicellulosiruptor bescii</i> as a platform for producing acetone and hydrogen from lignocellulose. Biotechnology and Bioengineering, 2020, 117, 3799-3808.	1.7	15
171	Growth of the extreme thermophileSulfolobus acidocaldarius in a hyperbaric helium bioreactor. Biotechnology and Bioengineering, 1987, 29, 1066-1074.	1.7	14
172	Destruction of Pharmaceutical and Biopharmaceutical Wastes by the Modar Supercritical Water Oxidation Process. Nature Biotechnology, 1988, 6, 1423-1427.	9.4	14
173	Lignocellulose solubilization and conversion by extremely thermophilic <i>Caldicellulosiruptor bescii</i> improves by maintaining metabolic activity. Biotechnology and Bioengineering, 2019, 116, 1901-1908.	1.7	14
174	Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (TÄpirins) from Extremely Thermophilic <i>Caldicellulosiruptor</i> Species. Applied and Environmental Microbiology, 2019, 85, .	1.4	14
175	Effect of hydrogen and carbon dioxide partial pressures on growth and sulfide production of the extremely thermophilic archaebacteriumPyrodictium brockii. Biotechnology and Bioengineering, 1988, 32, 438-443.	1.7	13
176	Machine learning reveals sexâ€specific 17βâ€estradiolâ€responsive expression patterns in white perch (<i>Morone americana</i>) plasma proteins. Proteomics, 2015, 15, 2678-2690.	1.3	13
177	Bioavailability of Carbohydrate Content in Natural and Transgenic Switchgrasses for the Extreme Thermophile Caldicellulosiruptor bescii. Applied and Environmental Microbiology, 2017, 83, .	1.4	13
178	Viscosity Reduction Of Hydraulic Fracturing Fluids Through Enzymatic Hydrolysis. SPE Journal, 1997, 2, 204-212.	1.7	12
179	Production of lignofuels and electrofuels by extremely thermophilic microbes. Biofuels, 2014, 5, 499-515.	1.4	12
180	VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae. Environmental Microbiology, 2017, 19, 2831-2842.	1.8	12

#	Article	IF	CITATIONS
181	Sulfur Reduction by the Extremely Thermophilic Archaebacterium <i>Pyrodictium occultum </i> Applied and Environmental Microbiology, 1987, 53, 1690-1693.	1.4	12
182	Characterization of Enzymes from High-Temperature Bacteria. ACS Symposium Series, 1992, , 23-41.	0.5	11
183	Î ² -Mannanases from Thermotoga species. Methods in Enzymology, 2001, 330, 224-238.	0.4	11
184	The Order Thermococcales and the Family Thermococcaceae. , 2014, , 363-383.		11
185	<i><i><scp>C</scp>aldicellulosiruptor saccharolyticus</i> transcriptomes reveal consequences of chemical pretreatment and genetic modification of lignocellulose. Microbial Biotechnology, 2017, 10, 1546-1557.</i>	2.0	11
186	The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate. Biotechnology for Biofuels, 2018, 11, 80.	6.2	11
187	Engineering considerations for growth of bacteria at temperatures around 100°C. Applied Biochemistry and Biotechnology, 1988, 18, 53-73.	1.4	10
188	Probing coals for non-pyritic sulphur using sulphur-metabolizing mesophilic and hyperthermophilic bacteria. Fuel, 1989, 68, 1368-1375.	3.4	10
189	Enzymes from high-temperature microorganisms. Current Opinion in Biotechnology, 1993, 4, 188-192.	3.3	10
190	Influence of polymolecular events on inactivation behavior of xylose isomerase from Thermotoga neapolitana 5068., 1999, 62, 509-517.		10
191	Î ² -Endoglucanase from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 346-354.	0.4	10
192	Protease I from Pyrococcus furiosus. Methods in Enzymology, 2001, 330, 403-413.	0.4	10
193	Extremely Thermophilic Microorganisms. Annals of the New York Academy of Sciences, 1994, 745, 409-425.	1.8	10
194	Colocation of Genes Encoding a tRNA-mRNA Hybrid and a Putative Signaling Peptide on Complementary Strands in the Genome of the Hyperthermophilic Bacterium Thermotoga maritima. Journal of Bacteriology, 2006, 188, 6802-6807.	1.0	10
195	Part II: defining and quantifying individual and co-cultured intracellular proteomes of two thermophilic microorganisms by GeLC-MS2 and spectral counting. Analytical and Bioanalytical Chemistry, 2010, 398, 391-404.	1.9	10
196	Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile <i>Caldicellulosiruptor bescii</i> i>NSystems, 2021, 6, e0134520.	1.7	10
197	Plant biomass fermentation by the extreme thermophile Caldicellulosiruptor bescii for co-production of green hydrogen and acetone: Technoeconomic analysis. Bioresource Technology, 2022, 348, 126780.	4.8	10
198	Hollow Fiber Microfiltration Methods for Recovery of Rat Basophilic Leukemia Cells (RBL—2H3) From Tissue Culture Media. Biotechnology Progress, 1986, 2, 230-233.	1.3	9

#	Article	IF	Citations
199	Effect of Culturing Conditions on the Production of Exotoxin A by Pseudomonas aeruginosa. Annals of the New York Academy of Sciences, 1987, 506, 663-668.	1.8	9
200	Extremely Thermoacidophilic <i>Metallosphaera</i> Species Mediate Mobilization and Oxidation of Vanadium and Molybdenum Oxides. Applied and Environmental Microbiology, 2019, 85, .	1.4	9
201	Modification of the glycolytic pathway in Pyrococcus furiosus and the implications for metabolic engineering. Extremophiles, 2020, 24, 511-518.	0.9	9
202	Use of the lignocellulose-degrading bacterium Caldicellulosiruptor bescii to assess recalcitrance and conversion of wild-type and transgenic poplar. Biotechnology for Biofuels, 2020, 13, 43.	6.2	9
203	Thermophilic microbial deconstruction and conversion of natural and transgenic lignocellulose. Environmental Microbiology Reports, 2021, 13, 272-293.	1.0	9
204	Chemical and microbiological problems associated with research on the biodesulfurization of coal. A review. Resources, Conservation and Recycling, 1991, 5, 183-193.	5.3	8
205	Continuous cultivation of hyperthermophiles. Methods in Enzymology, 2001, 330, 31-40.	0.4	8
206	Metabolic Enzymes from Sulfur-Dependent, Extremely Thermophilic Organisms. ACS Symposium Series, 1992, , 4-22.	0.5	7
207	Probing the stability of native and activated forms of $\hat{l}\pm 2$ -macroglobulin. International Journal of Biological Macromolecules, 2008, 42, 62-67.	3.6	7
208	Plant cell calciumâ€rich environment enhances thermostability of recombinantly produced αâ€amylase from the hyperthermophilic bacterium <i>Thermotoga maritime</i> Bioengineering, 2009, 104, 947-956.	1.7	7
209	The renaissance of life near the boiling point – at last, genetics and metabolic engineering. Microbial Biotechnology, 2017, 10, 37-39.	2.0	7
210	A synthetic enzymatic pathway for extremely thermophilic acetone production based on the unexpectedly thermostable acetoacetate decarboxylase from Clostridium acetobutylicum. Biotechnology and Bioengineering, 2018, 115, 2951-2961.	1.7	7
211	Biocatalysis Near and Above 100 °C. ACS Symposium Series, 1992, , 1-3.	0.5	6
212	Xylose isomerases from Thermotoga. Methods in Enzymology, 2001, 330, 215-224.	0.4	6
213	Complete Genome Sequences of Extremely Thermoacidophilic Metal-Mobilizing Type Strain Members of the Archaeal Family Sulfolobaceae, Acidianus brierleyi DSM-1651, Acidianus sulfidivorans DSM-18786, and Metallosphaera hakonensis DSM-7519. Microbiology Resource Announcements, 2018, 7, .	0.3	6
214	Genome Sequences of Five Type Strain Members of the Archaeal Family <i>Sulfolobaceae</i> , Acidianus ambivalens, Acidianus infernus, Stygiolobus azoricus, Sulfuracidifex metallicus, and Sulfurisphaera ohwakuensis. Microbiology Resource Announcements, 2020, 9, .	0.3	6
215	Genome-Scale Metabolic Model of <i>Caldicellulosiruptor bescii</i> Reveals Optimal Metabolic Engineering Strategies for Bio-based Chemical Production. MSystems, 2021, 6, e0135120.	1.7	6
216	Effect of hyperbaric oxygen and carbon dioxide on heterotrophic growth of the extreme thermophileSulfolobus acidocaldarius. Biotechnology and Bioengineering, 1988, 31, 750-754.	1.7	5

#	Article	IF	CITATIONS
217	Physiological and Biochemical Characteristics of Pyrococcus furiosus, a Hyperthermophilic Archaebacterium. Annals of the New York Academy of Sciences, 1992, 665, 309-319.	1.8	5
218	Homomultimeric protease and putative bacteriocin homolog from Thermotoga maritima. Methods in Enzymology, 2001, 330, 455-460.	0.4	5
219	Significance of polysaccharides in microbial physiology and the ecology of hydrothermal vent environments. Geophysical Monograph Series, 2004, , 213-226.	0.1	5
220	Functional genomics-based studies of the microbial ecology of hyperthermophilic micro-organisms. Biochemical Society Transactions, 2004, 32, 188-192.	1.6	5
221	Secretion and fusion of biogeochemically active archaeal membrane vesicles. Geobiology, 2018, 16, 659-673.	1.1	5
222	Engineering the cellulolytic extreme thermophile <i>Caldicellulosiruptor bescii</i> to reduce carboxylic acids to alcohols using plant biomass as the energy source. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 585-597.	1.4	5
223	The Extremely Thermophilic Genus Caldicellulosiruptor: Physiological and Genomic Characteristics for Complex Carbohydrate Conversion to Molecular Hydrogen. Advances in Photosynthesis and Respiration, 2014, , 177-195.	1.0	5
224	Growth of Extremely Thermophilic Archaebacteria under Elevated Hyperbaric Conditions. Annals of the New York Academy of Sciences, 1987, 506, 51-66.	1.8	4
225	Hydrogen-Sulfur Autotrophy in the Hyperthermophilic Archaebacterium, <i>Pyrodictium brockii </i> Biotechnology and Genetic Engineering Reviews, 1990, 8, 345-378.	2.4	4
226	Lignocellulosic Biomass Deconstruction by the Extremely Thermophilic Genus Caldicellulosiruptor. , 2015, , 91-120.		4
227	Coal sulphur transformations monitored by hyperthermophilic archaebacteria. Fuel, 1991, 70, 599-604.	3.4	3
228	Enzymatic Modification of Guar Solutions. , 2002, , 41-49.		3
229	Impact of growth mode, phase, and rate on the metabolic state of the extremely thermophilic archaeon Pyrococcus furiosus. Biotechnology and Bioengineering, 2017, 114, 2947-2954.	1.7	3
230	Fox Cluster determinants for iron biooxidation in the extremely thermoacidophilic Sulfolobaceae. Environmental Microbiology, 2022, 24, 850-865.	1.8	3
231	Intersection of Biotic and Abiotic Sulfur Chemistry Supporting Extreme Microbial Life in Hot Acid. Journal of Physical Chemistry B, 2021, 125, 5243-5257.	1.2	2
232	Steroids and oxygen solubility. Steroids, 1976, 28, 307-310.	0.8	1
233	Influence of hydrodynamics on physical and chemical gas absorption in packed columns. Industrial & Lamp; Engineering Chemistry Research, 1988, 27, 636-642.	1.8	1
234	Stationary Phase and Nutrient Levels Trigger Transcription of a Genomic Locus Containing a Novel Peptide (TM1316) in the Hyperthermophilic Bacterium Thermotoga maritima. Applied and Environmental Microbiology, 2013, 79, 6637-6646.	1.4	1

#	Article	IF	CITATIONS
235	Functional Genomics., 0,, 434-462.		1
236	CONDITIONING COAL GAS WITH REFRIGERATED METHANOL IN A SYSTEM OF PACKED COLUMNS. Chemical Engineering Communications, 1985, 34, 27-35.	1.5	0
237	Bioreactor operation for the production of exotoxin A byPseudomonas aeruginosa. Biotechnology and Bioengineering, 1989, 34, 1214-1220.	1.7	0
238	Biocatalysis and biotransformation: Editorial overview. Current Opinion in Chemical Biology, 1999, 3, 9-10.	2.8	0
239	Microbial ecology of hydrothermal biotypes. , 2004, , .		O
240	Transcriptomics, Proteomics, and Structural Genomics of Pyrococcus Furiosus., 0,, 239-246.		0
241	Integrating Bioinformatics Tools Into Inquiry-Based Molecular Biology Laboratory Education Modules. Frontiers in Education, 2021, 6, .	1.2	0