
David A Van Heel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2699735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple common variants for celiac disease influencing immune gene expression. Nature Genetics, 2010, 42, 295-302.	21.4	871
2	Diagnosis and management of adult coeliac disease: guidelines from the British Society of Gastroenterology. Gut, 2014, 63, 1210-1228.	12.1	870
3	Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nature Genetics, 2011, 43, 1193-1201.	21.4	682
4	Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease. New England Journal of Medicine, 2008, 359, 2767-2777.	27.0	654
5	Newly identified genetic risk variants for celiac disease related to the immune response. Nature Genetics, 2008, 40, 395-402.	21.4	599
6	A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nature Genetics, 2007, 39, 827-829.	21.4	592
7	Pervasive Sharing of Genetic Effects in Autoimmune Disease. PLoS Genetics, 2011, 7, e1002254.	3.5	540
8	A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nature Genetics, 2009, 41, 1182-1190.	21.4	481
9	Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nature Reviews Genetics, 2013, 14, 661-673.	16.3	459
10	Comprehensive, Quantitative Mapping of T Cell Epitopes in Gluten in Celiac Disease. Science Translational Medicine, 2010, 2, 41ra51.	12.4	393
11	Association Between Telomere Length and Risk of Cancer and Non-Neoplastic Diseases. JAMA Oncology, 2017, 3, 636.	7.1	376
12	Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations. Cell, 2020, 182, 1198-1213.e14.	28.9	353
13	The power of genetic diversity in genome-wide association studies of lipids. Nature, 2021, 600, 675-679.	27.8	353
14	Trans-eQTLs Reveal That Independent Genetic Variants Associated with a Complex Phenotype Converge on Intermediate Genes, with a Major Role for the HLA. PLoS Genetics, 2011, 7, e1002197.	3.5	324
15	Muramyl dipeptide and toll-like receptor sensitivity in NOD2-associated Crohn's disease. Lancet, The, 2005, 365, 1794-1796.	13.7	305
16	Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Human Molecular Genetics, 2005, 14, 1245-1250.	2.9	299
17	Inflammatory Skin and Bowel Disease Linked to <i>ADAM17</i> Deletion. New England Journal of Medicine, 2011, 365, 1502-1508.	27.0	285
18	Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nature Communications, 2018, 9, 1416.	12.8	279

#	Article	IF	CITATIONS
19	Health and population effects of rare gene knockouts in adult humans with related parents. Science, 2016, 352, 474-477.	12.6	272
20	Recent advances in coeliac disease. Gut, 2006, 55, 1037-1046.	12.1	266
21	Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF-kappaB transcription factors. Human Molecular Genetics, 2002, 11, 1281-1289.	2.9	250
22	Genetic Analysis of Innate Immunity in Crohn's Disease and Ulcerative Colitis Identifies Two Susceptibility Loci Harboring CARD9 and IL18RAP. American Journal of Human Genetics, 2008, 82, 1202-1210.	6.2	229
23	Inflammatory bowel disease susceptibility loci defined by genome scan meta-analysis of 1952 affected relative pairs. Human Molecular Genetics, 2004, 13, 763-770.	2.9	219
24	Novel Association in Chromosome 4q27 Region with Rheumatoid Arthritis and Confirmation of Type 1 Diabetes Point to a General Risk Locus for Autoimmune Diseases. American Journal of Human Genetics, 2007, 81, 1284-1288.	6.2	189
25	A Meta-Analysis of Genome-Wide Association Scans Identifies IL18RAP, PTPN2, TAGAP, and PUS10 As Shared Risk Loci for Crohn's Disease and Celiac Disease. PLoS Genetics, 2011, 7, e1001283.	3.5	187
26	Negligible impact of rare autoimmune-locus coding-region variants on missing heritability. Nature, 2013, 498, 232-235.	27.8	184
27	Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF-ÂB signalling. Gut, 2009, 58, 1078-1083.	12.1	170
28	Evolutionary and Functional Analysis of Celiac Risk Loci Reveals SH2B3 as a Protective Factor against Bacterial Infection. American Journal of Human Genetics, 2010, 86, 970-977.	6.2	168
29	HLA-DQA1–HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nature Genetics, 2014, 46, 1131-1134.	21.4	165
30	Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nature Genetics, 2015, 47, 1085-1090.	21.4	164
31	A Structural and Immunological Basis for the Role of Human Leukocyte Antigen DQ8 in Celiac Disease. Immunity, 2007, 27, 23-34.	14.3	157
32	Investigating the Causal Relationship of C-Reactive Protein with 32 Complex Somatic and Psychiatric Outcomes: A Large-Scale Cross-Consortium Mendelian Randomization Study. PLoS Medicine, 2016, 13, e1001976.	8.4	150
33	Associations with tight junction genes PARD3 and MAGI2 in Dutch patients point to a common barrier defect for coeliac disease and ulcerative colitisAn unusual case of ascites. Gut, 2007, 57, 463-467.	12.1	142
34	Effective Detection of Human Leukocyte Antigen Risk Alleles in Celiac Disease Using Tag Single Nucleotide Polymorphisms. PLoS ONE, 2008, 3, e2270.	2.5	136
35	Synergistic enhancement of Toll-like receptor responses by NOD1 activation. European Journal of Immunology, 2005, 35, 2471-2476.	2.9	135
36	Common and different genetic background for rheumatoid arthritis and coeliac disease. Human Molecular Genetics, 2009, 18, 4195-4203.	2.9	128

#	Article	IF	CITATIONS
37	Analysis of HLA and Non-HLA Alleles Can Identify Individuals at High Risk for Celiac Disease. Gastroenterology, 2009, 137, 834-840.e3.	1.3	126
38	Fine mapping in the MHC region accounts for 18% additional genetic risk for celiac disease. Nature Genetics, 2015, 47, 577-578.	21.4	123
39	Evaluating drug targets through human loss-of-function genetic variation. Nature, 2020, 581, 459-464.	27.8	115
40	Improving coeliac disease risk prediction by testing non-HLA variants additional to HLA variants. Gut, 2014, 63, 415-422.	12.1	113
41	Synergy between TLR9 and NOD2 innate immune responses is lost in genetic Crohn's disease. Gut, 2005, 54, 1553-1557.	12.1	111
42	T cells in peripheral blood after gluten challenge in coeliac disease. Gut, 2005, 54, 1217-1223.	12.1	110
43	Genetics in coeliac disease. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2005, 19, 323-339.	2.4	103
44	Analysis of the IBD5 locus and potential gene-gene interactions in Crohn's disease. Gut, 2003, 52, 541-546.	12.1	96
45	Mutations in CSTA, Encoding Cystatin A, Underlie Exfoliative Ichthyosis and Reveal a Role for This Protease Inhibitor in Cell-Cell Adhesion. American Journal of Human Genetics, 2011, 89, 564-571.	6.2	89
46	DNAJC21 Mutations Link a Cancer-Prone Bone Marrow Failure Syndrome to Corruption in 60S Ribosome Subunit Maturation. American Journal of Human Genetics, 2016, 99, 115-124.	6.2	85
47	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
48	Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. Nature Communications, 2017, 8, 303.	12.8	81
49	A common CTLA4 haplotype associated with coeliac disease. European Journal of Human Genetics, 2005, 13, 440-444.	2.8	76
50	Modulation of dendritic cell phenotype and functionin an <i>in vitro </i> model of the intestinal epithelium. European Journal of Immunology, 2006, 36, 864-874.	2.9	71
51	Cohort Profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people. International Journal of Epidemiology, 2020, 49, 20-21i.	1.9	71
52	Replication of celiac disease UK genome-wide association study results in a US population. Human Molecular Genetics, 2009, 18, 4219-4225.	2.9	70
53	Crohn's disease: genetic susceptibility, bacteria, and innate immunity. Lancet, The, 2001, 357, 1902-1904.	13.7	66
54	NOD2 (CARD15), the first susceptibility gene for Crohn's disease. Gut, 2001, 49, 752-754.	12.1	61

#	Article	IF	CITATIONS
55	Further Evidence of IBD5/CARD15 (NOD2) Epistasis in the Susceptibility to Ulcerative Colitis. American Journal of Human Genetics, 2003, 73, 1465-1466.	6.2	59
56	MC3R links nutritional state to childhood growth and the timing of puberty. Nature, 2021, 599, 436-441.	27.8	59
57	Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut, 2006, 55, 969-972.	12.1	58
58	Selective NOD1 Agonists Cause Shock and Organ Injury/DysfunctionIn Vivo. American Journal of Respiratory and Critical Care Medicine, 2007, 175, 595-603.	5.6	58
59	The IBD6 Crohn's disease locus demonstrates complex interactions with CARD15 and IBD5 disease-associated variants. Human Molecular Genetics, 2003, 12, 2569-2575.	2.9	57
60	Comparative methylomics reveals gene-body H3K36me3 in <i>Drosophila</i> predicts DNA methylation and CpG landscapes in other invertebrates. Genome Research, 2011, 21, 1841-1850.	5.5	57
61	Antagonists and non-toxic variants of the dominant wheat gliadin T cell epitope in coeliac disease. Gut, 2006, 55, 485-491.	12.1	56
62	Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications, 2018, 9, 711.	12.8	54
63	Calcium Channel TRPV6 Expression in Human Duodenum: Different Relationships to the Vitamin D System and Aging in Men and Women. Journal of Bone and Mineral Research, 2006, 21, 1770-1777.	2.8	53
64	The genetics of chronic inflammatory diseases. Human Molecular Genetics, 2009, 18, R101-R106.	2.9	51
65	Genetics and pathogenesis of coeliac disease. Seminars in Immunology, 2009, 21, 346-354.	5.6	49
66	Translational Mini-Review Series on the Immunogenetics of Gut Disease: Immunogenetics of coeliac disease. Clinical and Experimental Immunology, 2008, 153, 162-173.	2.6	45
67	Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. ELife, 2020, 9, .	6.0	45
68	Detection, Imputation, and Association Analysis of Small Deletions and Null Alleles on Oligonucleotide Arrays. American Journal of Human Genetics, 2008, 82, 1316-1333.	6.2	40
69	Interleukin 15: its role in intestinal inflammation. Gut, 2006, 55, 444-445.	12.1	37
70	Exome Sequencing and Rare Variant Analysis RevealsÂMultiple Filaggrin Mutations in BangladeshiÂFamilies with Atopic Eczema andÂAdditional Risk Genes. Journal of Investigative Dermatology, 2018, 138, 2674-2677.	0.7	37
71	Association study of IL2/IL21 and FcgRIIa: significant association with the IL2/IL21 region in Scandinavian coeliac disease families. Genes and Immunity, 2008, 9, 364-367.	4.1	35
79	Recent advances in coeliac disease genetics Cut 2009 58 473-476	19.1	91

ent advances in coeliac disease genetics. Gut, 2009, 58, 473-476. 72

12.131

#	ARTICLE	IF	CITATIONS
73	Association study of the IL18RAP locus in three European populations with coeliac disease. Human Molecular Genetics, 2009, 18, 1148-1155.	2.9	29
74	Integrating polygenic risk scores in the prediction of type 2 diabetes risk and subtypes in British Pakistanis and Bangladeshis: A population-based cohort study. PLoS Medicine, 2022, 19, e1003981.	8.4	24
75	Identification of novel polymorphisms in the β7 integrin gene: family-based association studies in inflammatory bowel disease. Genes and Immunity, 2001, 2, 455-460.	4.1	21
76	Detection of muramyl dipeptide-sensing pathway defects in patients with Crohn's disease. Inflammatory Bowel Diseases, 2006, 12, 598-605.	1.9	21
77	Fine-scale population structure and demographic history of British Pakistanis. Nature Communications, 2021, 12, 7189.	12.8	21
78	NOD2 activity modulates the phenotype of LPS-stimulated dendritic cells to promote the development of T-helper type 2-like lymphocytes $\hat{a} \in$ " Possible implications for NOD2-associated Crohn's disease. Journal of Crohn's and Colitis, 2007, 1, 106-115.	1.3	17
79	New susceptibility genes for ulcerative colitis. Nature Genetics, 2008, 40, 686-688.	21.4	17
80	A single nucleotide polymorphism genetic risk score to aid diagnosis of coeliac disease: a pilot study in clinical care. Alimentary Pharmacology and Therapeutics, 2020, 52, 1165-1173.	3.7	17
81	Normal responses to specific NOD1-activating peptidoglycan agonists in the presence of the NOD2 frameshift and other mutations in Crohn's disease. European Journal of Immunology, 2006, 36, 1629-1635.	2.9	14
82	Human Pancreatic Secretory Trypsin Inhibitor Stabilizes Intestinal Mucosa against Noxious Agents. American Journal of Pathology, 2007, 171, 1462-1473.	3.8	12
83	Exome Sequencing of 75 Individuals from Multiply Affected Coeliac Families and Large Scale Resequencing Follow Up. PLoS ONE, 2015, 10, e0116845.	2.5	8
84	Association of TNF-alpha-857C with inflammatory bowel disease in the Australian population. Scandinavian Journal of Gastroenterology, 2003, 38, 533-4.	1.5	8
85	Detecting the risks of osteoporotic fractures in coeliac disease. Gut, 2003, 52, 1229-a-1230.	12.1	5
86	Colonoscopic appearances and diagnosis of intussusception due to large-bowel lipoma. Endoscopy, 1999, 31, 508.	1.8	3