Baoshun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/269916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasmon-assisted facile selective gaseous isopropanol dehydrogenation over Ag nanocubes. Catalysis Science and Technology, 2022, 12, 94-104.	4.1	6
2	A light–heat synergism in the sub-bandgap photocatalytic response of pristine TiO ₂ : a study of <i>in situ</i> diffusion reflectance and conductance. Physical Chemistry Chemical Physics, 2022, 24, 5618-5626.	2.8	4
3	Controlling the crystalline orientation and textual morphologies of the VO ₂ film and the effect on insulator–metal transition properties. Japanese Journal of Applied Physics, 2022, 61, 085504.	1.5	6
4	Kinetics and energetic analysis of the slow dispersive electron transfer from nano-TiO ₂ to O ₂ by <i>in situ</i> diffusion reflectance and Laplace transform. Physical Chemistry Chemical Physics, 2021, 23, 19901-19910.	2.8	3
5	The effect of Cu dopants on electron transfer to O ₂ and the connection with acetone photocatalytic oxidations over nano-TiO ₂ . Physical Chemistry Chemical Physics, 2021, 23, 8300-8308.	2.8	6
6	Preparation, Characterization, and Photocatalytic Properties of Self-Standing Pure and Cu-Doped TiO ₂ Nanobelt Membranes. ACS Omega, 2021, 6, 4534-4541.	3.5	9
7	Comparative study of the metal insulator transition of a VO2 film with simultaneous infrared thermography and electric measurements. AIP Advances, 2021, 11, 035026.	1.3	5
8	Kinetics analysis of the electron transfer from nano-TiO2 to O2 through on-line absorptions and theoretical modeling. Journal of Applied Physics, 2021, 129, .	2.5	5
9	Facile Preparation of Zn ₂ V ₂ O ₇ –VO ₂ Composite Films with Enhanced Thermochromic Properties for Smart Windows. ACS Applied Electronic Materials, 2021, 3, 2224-2232.	4.3	17
10	Exponential and Gaussian traps in nano-TiO2 and their function in kinetics of the electron transfer to O2. Journal of Applied Physics, 2021, 130, 035102.	2.5	1
11	Acid Solution Processed VO2-Based Composite Films with Enhanced Thermochromic Properties for Smart Windows. Materials, 2021, 14, 4927.	2.9	7
12	Observation of the crystalline orientation dependence of the semiconductor–metal transition for thermal oxidation induced VO ₂ films over amorphous quartz glasses. AIP Advances, 2021, 11, 125232.	1.3	4
13	New Insights into the Fundamental Principle of Semiconductor Photocatalysis. ACS Omega, 2020, 5, 14847-14856.	3.5	44
14	Facile synthesis of VO2 (D) and its transformation to VO2(M) with enhanced thermochromic properties for smart windows. Ceramics International, 2020, 46, 14739-14746.	4.8	31
15	Hydrothermal synthesis of delafossite CuScO ₂ hexagonal plates as an electrocatalyst for the alkaline oxygen evolution reaction. Dalton Transactions, 2020, 49, 3519-3524.	3.3	18
16	Charge carrier transfer in photocatalysis. Interface Science and Technology, 2020, , 103-159.	3.3	2
17	Can Plasmonic Effect Cause an Increase in the Catalytic Reduction of <i>p</i> -nitrophenol by Sodium Borohydride over Au Nanorods?. ACS Omega, 2020, 5, 11998-12004.	3.5	7
18	One-step fabrication of a self-supported Co@CoTe ₂ electrocatalyst for efficient and durable oxygen evolution reactions. Inorganic Chemistry Frontiers, 2020, 7, 2523-2532.	6.0	37

BAOSHUN LIU

#	Article	IF	CITATIONS
19	Liquid N2 quenching induced oxygen defects and surface distortion in TiO2 and the effect on the photocatalysis of methylene blue and acetone. Applied Surface Science, 2019, 494, 266-274.	6.1	18
20	Gaseous Photocatalytic Oxidation of Formic Acid over TiO ₂ : A Comparison between the Charge Carrier Transfer and Light-Assisted Mars–van Krevelen Pathways. Journal of Physical Chemistry C, 2019, 123, 22261-22272.	3.1	13
21	TiO ₂ Nanotube Arrays Formed on Ti Meshes with Periodically Arranged Holes for Flexible Dye-Sensitized Solar Cells. ACS Applied Nano Materials, 2019, 2, 3943-3950.	5.0	24
22	Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 1-57.	11.6	70
23	Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO2 crystals. Chinese Journal of Catalysis, 2019, 40, 403-412.	14.0	42
24	New Insight into the Role of Electron Transfer to O ₂ in Photocatalytic Oxidations of Acetone over TiO ₂ and the Effect of Au Cocatalyst. Journal of Physical Chemistry C, 2019, 123, 30958-30971.	3.1	16
25	Charge carrier interfacial transfer pathways from TiO2 and Au/TiO2 nanorod arrays to electrolyte and the association with photocatalysis. Applied Surface Science, 2019, 464, 367-375.	6.1	43
26	High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science, 2019, 465, 192-200.	6.1	24
27	Facile synthesis of mesoporous VO2 nanocrystals by a cotton-template method and their enhanced thermochromic properties. Solar Energy Materials and Solar Cells, 2018, 176, 427-434.	6.2	49
28	A low temperature hydrothermal synthesis of delafossite CuCoO ₂ as an efficient electrocatalyst for the oxygen evolution reaction in alkaline solutions. Inorganic Chemistry Frontiers, 2018, 5, 183-188.	6.0	58
29	The role of electron interfacial transfer in mesoporous nano-TiO ₂ photocatalysis: a combined study of in situ photoconductivity and numerical kinetic simulation. Physical Chemistry Chemical Physics, 2017, 19, 8866-8873.	2.8	24
30	Observation of reduced phase transition temperature in N-doped thermochromic film of monoclinic VO2. Applied Surface Science, 2017, 410, 363-372.	6.1	43
31	The synergetic effect of V and Fe-co-doping in TiO 2 studied from the DFT + U first-principle calculation. Applied Surface Science, 2017, 399, 654-662.	6.1	43
32	Ice–Water Quenching Induced Ti ³⁺ Self-doped TiO ₂ with Surface Lattice Distortion and the Increased Photocatalytic Activity. Journal of Physical Chemistry C, 2017, 121, 19836-19848.	3.1	69
33	A visible-light-active Au-Cu(I)@Na2Ti6O13 nanostructured hybrid pasmonic photocatalytic membrane for acetaldehyde elimination. Chinese Journal of Catalysis, 2017, 38, 2048-2055.	14.0	20
34	Monte-Carlo modelling of nano-material photocatalysis: bridging photocatalytic activity and microscopic charge kinetics. Physical Chemistry Chemical Physics, 2016, 18, 11520-11527.	2.8	23
35	A stochastic study of electron transfer kinetics in nano-particulate photocatalysis: a comparison of the quasi-equilibrium approximation with a random walking model. Physical Chemistry Chemical Physics, 2016, 18, 31914-31923.	2.8	14
36	Facile process to greatly improve the photocatalytic activity of the TiO 2 thin film on window glass for the photodegradation of acetone and benzene. Chemical Engineering Journal, 2016, 284, 1156-1164.	12.7	37

Baoshun Liu

#	Article	IF	CITATIONS
37	Dye-sensitized solar cells fabricated by the TiO2 nanostructural materials synthesized by electrospray and hydrothermal post-treatment. Applied Surface Science, 2015, 358, 412-417.	6.1	19
38	In Situ Photoconductivity Kinetic Study of Nano-TiO ₂ during the Photocatalytic Oxidation of Formic Acid: Effects of New Recombination and Current Doubling. Journal of Physical Chemistry C, 2015, 119, 21711-21722.	3.1	19
39	Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Physical Chemistry Chemical Physics, 2014, 16, 8751.	2.8	225
40	Investigation of Electron Behavior in Nanoâ€TiO ₂ Photocatalysis by Using In Situ Openâ€Circuit Voltage and Photoconductivity Measurements. Chemistry - A European Journal, 2013, 19, 10751-10759.	3.3	26
41	Construction of hierarchical titanium dioxide nanomaterials by tuning the structure of polyvinylpyrrolidone–titanium butoxide complexes from 2- to 3-dimensional. Journal of Materials Chemistry A, 2013, 1, 4993.	10.3	25
42	Synthesis, Characterization, and Photocatalysis of Fe-Doped : A Combined Experimental and Theoretical Study. International Journal of Photoenergy, 2012, 2012, 1-10.	2.5	34
43	Application of ArcGIS in Recovery and Management of Geological Environment. , 2012, , .		Ο
44	<scp><scp>TiO</scp></scp> ₂ / <scp><scp>WO</scp></scp> ₃ Layered Film with Dualâ€Function of Antiâ€ <scp>UV</scp> Light and High Photoelectrocatalytic Activity: Facile Preparation and Characterization. Journal of the American Ceramic Society, 2012, 95, 3346-3351.	3.8	13
45	Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area: facile preparation and high-photocatalytic performance. Catalysis Science and Technology, 2012, 2, 1933.	4.1	77
46	Theoretical Kinetic Analysis of Heterogeneous Photocatalysis: The Effects of Surface Trapping and Bulk Recombination through Defects. Journal of Physical Chemistry C, 2011, 115, 16037-16042.	3.1	40
47	Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property. Journal of Materials Research, 2011, 26, 2691-2700.	2.6	20
48	Mesoporous TiO2Core–Shell Spheres Composed of Nanocrystals with Exposed High-Energy Facets: Facile Synthesis and Formation Mechanism. Langmuir, 2011, 27, 8500-8508.	3.5	89
49	Roasting reduction-magnetic separation of oolitic-hematite and preparation of cementitious materials. , 2011, , .		0
50	Temperature effect on the photocatalytic degradation of methyl orange under UV-vis light irradiation. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 210-213.	1.0	41
51	Preparation, characterization and photocatalytic property of Ag-loaded TiO2 powders using photodeposition method. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 258-263.	1.0	14
52	The effect of sputtering power on the structure and photocatalytic activity of TiO2 films prepared by magnetron sputtering. Thin Solid Films, 2009, 517, 6569-6575.	1.8	39
53	Low temperature fabrication of V-doped TiO2 nanoparticles, structure and photocatalytic studies. Journal of Hazardous Materials, 2009, 169, 1112-1118.	12.4	135
54	The surface change of TiO2 film induced by UV illumination and the effects on UV–vis transmission spectra. Applied Surface Science, 2008, 255, 2752-2758.	6.1	11

BAOSHUN LIU

#	Article	IF	CITATIONS
55	The photoluminescence spectroscopic study of anatase TiO2 prepared by magnetron sputtering. Materials Chemistry and Physics, 2007, 106, 350-353.	4.0	124
56	The structural and photoluminescence studies related to the surface of the TiO2 sol prepared by wet chemical method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 134, 27-31.	3.5	55
57	The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering. Materials Chemistry and Physics, 2005, 90, 207-212.	4.0	73