Peter P Cherepanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2698432/publications.pdf Version: 2024-02-01

		30070	34986
100	12,745	54	98
papers	citations	h-index	g-index
116	116	116	13108
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structure and function of retroviral integrase. Nature Reviews Microbiology, 2022, 20, 20-34.	28.6	52
2	Detection and quantification of antibody to SARS CoV 2 receptor binding domain provides enhanced sensitivity, specificity and utility. Journal of Virological Methods, 2022, 302, 114475.	2.1	8
3	Multivalent interactions essential for lentiviral integrase function. Nature Communications, 2022, 13, 2416.	12.8	12
4	Mapping of SARS-CoV-2 IgM and IgG in gingival crevicular fluid: Antibody dynamics and linkage to severity of COVID-19 in hospital inpatients. Journal of Infection, 2022, 85, 152-160.	3.3	6
5	Closeâ€up: HIV/SIV intasome structures shed new light on integrase inhibitor binding and viral escape mechanisms. FEBS Journal, 2021, 288, 427-433.	4.7	9
6	Clinical outcomes of COVID-19 in long-term care facilities for people with epilepsy. Epilepsy and Behavior, 2021, 115, 107602.	1.7	11
7	HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants. ACS Infectious Diseases, 2021, 7, 1469-1482.	3.8	14
8	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	6.4	200
9	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	10.3	107
10	Neutralization potency of monoclonal antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2 Spike is impacted by the B.1.1.7 variant. Immunity, 2021, 54, 1276-1289.e6.	14.3	112
11	Neutralizing Antibody Responses After SARS-CoV-2 Infection in End-Stage Kidney Disease and Protection Against Reinfection. Kidney International Reports, 2021, 6, 1799-1809.	0.8	13
12	Structural basis for the inhibition of HTLV-1 integration inferred from cryo-EM deltaretroviral intasome structures. Nature Communications, 2021, 12, 4996.	12.8	11
13	Defining Potential Therapeutic Targets in Coronavirus Disease 2019: A Cross-Sectional Analysis of a Single-Center Cohort. , 2021, 3, e0488.		2
14	Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. Med, 2021, 2, 1093-1109.e6.	4.4	6
15	Severe Acute Respiratory Syndrome Coronavirus 2 Serosurveillance in a Patient Population Reveals Differences in Virus Exposure and Antibody-Mediated Immunity According to Host Demography and Healthcare Setting. Journal of Infectious Diseases, 2021, 223, 971-980.	4.0	20
16	Characterization of humoral and SARS-CoV-2 specific T cell responses in people living with HIV. Nature Communications, 2021, 12, 5839.	12.8	67
17	Reduced neutralisation of the Delta (B.1.617.2) SARS-CoV-2 variant of concern following vaccination. PLoS Pathogens, 2021, 17, e1010022.	4.7	139
18	A bipartite structural organization defines the SERINC family of HIV-1 restriction factors. Nature Structural and Molecular Biology, 2020, 27, 78-83.	8.2	50

#	Article	IF	CITATIONS
19	Cryo-EM structure of the deltaretroviral intasome in complex with the PP2A regulatory subunit B56Î ³ . Nature Communications, 2020, 11, 5043.	12.8	21
20	Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax, 2020, 75, 1082-1088.	5.6	133
21	Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science, 2020, 370, 1339-1343.	12.6	735
22	Structural Basis for the Activation and Target Site Specificity of CDC7 Kinase. Structure, 2020, 28, 954-962.e4.	3.3	13
23	Scalable and robust SARS-CoV-2 testing in an academic center. Nature Biotechnology, 2020, 38, 927-931.	17.5	32
24	Pandemic peak SARS-CoV-2 infection and seroconversion rates in London frontline health-care workers. Lancet, The, 2020, 396, e6-e7.	13.7	196
25	Structural basis of second-generation HIV integrase inhibitor action and viral resistance. Science, 2020, 367, 806-810.	12.6	73
26	Retroviral integration into nucleosomes through DNA looping and sliding along the histone octamer. Nature Communications, 2019, 10, 4189.	12.8	43
27	Differential role for phosphorylation in alternative polyadenylation function versus nuclear import of SR-like protein CPSF6. Nucleic Acids Research, 2019, 47, 4663-4683.	14.5	35
28	POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication. Molecular Cell, 2018, 72, 112-126.e5.	9.7	87
29	A supramolecular assembly mediates lentiviral DNA integration. Science, 2017, 355, 93-95.	12.6	96
30	Structural basis for spumavirus GAG tethering to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5509-5514.	7.1	45
31	Retroviral intasomes arising. Current Opinion in Structural Biology, 2017, 47, 23-29.	5.7	46
32	Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors. Journal of Medicinal Chemistry, 2017, 60, 7315-7332.	6.4	44
33	Cdt1 stabilizes an open MCM ring for helicase loading. Nature Communications, 2017, 8, 15720.	12.8	69
34	Retroviral DNA Integration. Chemical Reviews, 2016, 116, 12730-12757.	47.7	177
35	Amplification, Next-generation Sequencing, and Genomic DNA Mapping of Retroviral Integration Sites. Journal of Visualized Experiments, 2016, , .	0.3	36
36	Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature, 2016, 530, 358-361.	27.8	88

#	Article	IF	CITATIONS
37	HIV-1 Integrase Strand Transfer Inhibitors with Reduced Susceptibility to Drug Resistant Mutant Integrases. ACS Chemical Biology, 2016, 11, 1074-1081.	3.4	35
38	Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathogens, 2016, 12, e1005860.	4.7	9
39	Key determinants of target DNA recognition by retroviral intasomes. Retrovirology, 2015, 12, 39.	2.0	56
40	Structural basis for retroviral integration into nucleosomes. Nature, 2015, 523, 366-369.	27.8	133
41	Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Research, 2014, 42, 5164-5176.	14.5	62
42	Structural basis for nuclear import of splicing factors by human Transportin 3. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2728-2733.	7.1	124
43	Efficient transduction of LEDGF/p75 mutant cells by complementary gain-of-function HIV-1 integrase mutant viruses. Molecular Therapy - Methods and Clinical Development, 2014, 1, 2.	4.1	13
44	Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiology Spectrum, 2014, 2, .	3.0	50
45	Retroviral Integrase Structure and DNA Recombination Mechanism. Microbiology Spectrum, 2014, 2, 1-22.	3.0	205
46	Activities, Crystal Structures, and Molecular Dynamics of Dihydro-1 <i>H</i> -isoindole Derivatives, Inhibitors of HIV-1 Integrase. ACS Chemical Biology, 2013, 8, 209-217.	3.4	44
47	Bromo- and Extraterminal Domain Chromatin Regulators Serve as Cofactors for Murine Leukemia Virus Integration. Journal of Virology, 2013, 87, 12721-12736.	3.4	135
48	3′-Processing and strand transfer catalysed by retroviral integrase <i>in crystallo</i> . EMBO Journal, 2012, 31, 3020-3028.	7.8	144
49	HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Research, 2012, 40, 11518-11530.	14.5	86
50	Crystal structure of human CDC7 kinase in complex with its activator DBF4. Nature Structural and Molecular Biology, 2012, 19, 1101-1107.	8.2	72
51	Centralspindlin links the mitotic spindle to the plasma membrane during cytokinesis. Nature, 2012, 492, 276-279.	27.8	131
52	Solution Conformations of Prototype Foamy Virus Integrase and Its Stable Synaptic Complex with U5 Viral DNA. Structure, 2012, 20, 1918-1928.	3.3	36
53	The structural biology of HIV-1: mechanistic and therapeutic insights. Nature Reviews Microbiology, 2012, 10, 279-290.	28.6	272
54	Structural insights into the retroviral DNA integration apparatus. Current Opinion in Structural Biology, 2011, 21, 249-256.	5.7	112

#	Article	IF	CITATIONS
55	Structural biology of retroviral DNA integration. Virology, 2011, 411, 194-205.	2.4	106
56	Structural and Functional Analyses of the Second-Generation Integrase Strand Transfer Inhibitor Dolutegravir (S/GSK1349572). Molecular Pharmacology, 2011, 80, 565-572.	2.3	223
57	Integrase illuminated. EMBO Reports, 2010, 11, 328-328.	4.5	18
58	Retroviral intasome assembly and inhibition of DNA strand transfer. Nature, 2010, 464, 232-236.	27.8	620
59	The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature, 2010, 468, 326-329.	27.8	280
60	Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15910-15915.	7.1	184
61	Transcriptional Co-activator LEDGF Interacts with Cdc7-Activator of S-phase Kinase (ASK) and Stimulates Its Enzymatic Activity. Journal of Biological Chemistry, 2010, 285, 541-554.	3.4	57
62	Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20057-20062.	7.1	275
63	Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Research, 2009, 37, 243-255.	14.5	130
64	158 The SET complex acts as a barrier to autointegration of HIV-1. Journal of Acquired Immune Deficiency Syndromes (1999), 2009, 51, .	2.1	0
65	The Interaction Between Lentiviral Integrase and LEDGF: Structural and Functional Insights. Viruses, 2009, 1, 780-801.	3.3	20
66	A Novel Co-Crystal Structure Affords the Design of Gain-of-Function Lentiviral Integrase Mutants in the Presence of Modified PSIP1/LEDGF/p75. PLoS Pathogens, 2009, 5, e1000259.	4.7	139
67	Structural Basis for Functional Tetramerization of Lentiviral Integrase. PLoS Pathogens, 2009, 5, e1000515.	4.7	113
68	The SET Complex Acts as a Barrier to Autointegration of HIV-1. PLoS Pathogens, 2009, 5, e1000327.	4.7	82
69	Application of general formulas for the correction of a lattice-translocation defect in crystals of a lentiviral integrase in complex with LEDGF. Acta Crystallographica Section D: Biological Crystallography, 2009, 65, 966-973.	2.5	12
70	HIV-1 exploits importin 7 to maximize nuclear import of its DNA genome. Retrovirology, 2009, 6, 11.	2.0	85
71	The Lentiviral Integrase Binding Protein LEDGF/p75 and HIV-1 Replication. PLoS Pathogens, 2008, 4, e1000046.	4.7	199
72	LEDGF/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro. Nucleic Acids Research, 2007, 35, 113-124.	14.5	160

Peter P Cherepanov

#	Article	IF	CITATIONS
73	LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes and Development, 2007, 21, 1767-1778.	5.9	408
74	Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness. Virology, 2007, 357, 79-90.	2.4	65
75	A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Research, 2006, 34, 1653-1665.	14.5	166
76	Transcriptional co-activator p75 binds and tethers the Myc-interacting protein JPO2 to chromatin. Journal of Cell Science, 2006, 119, 2563-2571.	2.0	106
77	Mutations in Both <i>env</i> and <i>gag</i> genes are required for HIV-1 resistance to the polysulfonic dendrimer SPL2923, as corroborated by chimeric virus technology. Antiviral Chemistry and Chemotherapy, 2005, 16, 253-266.	0.6	6
78	Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nature Structural and Molecular Biology, 2005, 12, 526-532.	8.2	221
79	Lys-34, Dispensable for Integrase Catalysis, Is Required for Preintegration Complex Function and Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2005, 79, 12584-12591.	3.4	38
80	Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17308-17313.	7.1	379
81	Identification and Characterization of a Functional Nuclear Localization Signal in the HIV-1 Integrase Interactor LEDGF/p75. Journal of Biological Chemistry, 2004, 279, 33421-33429.	3.4	86
82	Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2004, 78, 12735-12746.	3.4	115
83	Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase. Journal of Biological Chemistry, 2004, 279, 48883-48892.	3.4	248
84	Expression of HIV-1 integrase in CEM cells inhibits HIV-1 replication. Journal of Gene Medicine, 2004, 6, 268-277.	2.8	1
85	HIV-1 Integrase Forms Stable Tetramers and Associates with LEDGF/p75 Protein in Human Cells. Journal of Biological Chemistry, 2003, 278, 372-381.	3.4	608
86	LEDGF/p75 Is Essential for Nuclear and Chromosomal Targeting of HIV-1 Integrase in Human Cells. Journal of Biological Chemistry, 2003, 278, 33528-33539.	3.4	432
87	env Chimeric Virus Technology for Evaluating Human Immunodeficiency Virus Susceptibility to Entry Inhibitors. Antimicrobial Agents and Chemotherapy, 2002, 46, 3954-3962.	3.2	39
88	In Search of Authentic Inhibitors of HIV-1 Integration. Antiviral Chemistry and Chemotherapy, 2002, 13, 1-15.	0.6	29
89	New Class of HIV Integrase Inhibitors that Block Viral Replication in Cell Culture. Current Biology, 2002, 12, 1169-1177.	3.9	100

90 Assays for the Evaluation of HIV-1 Integrase Inhibitors. , 2001, 160, 139-155.

35

#	Article	IF	CITATIONS
91	Highâ€level expression of active HIVâ€1 integrase from a synthetic gene in human cells. FASEB Journal, 2000, 14, 1389-1399.	0.5	46
92	High-level expression of active HIV-1 integrase from a synthetic gene in human cells. FASEB Journal, 2000, 14, 1389-1399.	0.5	56
93	DNA-Dependent Protein Kinase Is Not Required for Efficient Lentivirus Integration. Journal of Virology, 2000, 74, 11278-11285.	3.4	84
94	Activity of recombinant HIV-1 integrase on mini-HIV DNA. Nucleic Acids Research, 1999, 27, 2202-2210.	14.5	47
95	Nuclear Localization of Human Immunodeficiency Virus Type 1 Integrase Expressed as a Fusion Protein with Green Fluorescent Protein. Virology, 1999, 258, 327-332.	2.4	74
96	Characterization of a <i>dam</i> Mutant of <i>Serratia marcescens</i> and Nucleotide Sequence of the <i>dam</i> Region. Journal of Bacteriology, 1999, 181, 3880-3885.	2.2	20
97	Human Immunodeficiency Virus Clycoprotein gp120 as the Primary Target for the Antiviral Action of AR177 (Zintevir). Molecular Pharmacology, 1998, 53, 340-345.	2.3	118
98	Mode of Interaction of G-Quartets with the Integrase of Human Immunodeficiency Virus Type 1. Molecular Pharmacology, 1997, 52, 771-780.	2.3	82
99	SRR-SB3, a disulfide-containing macrolide that inhibits a late stage of the replicative cycle of human immunodeficiency virus. Antimicrobial Agents and Chemotherapy, 1997, 41, 262-268.	3.2	47
100	Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene, 1995, 158, 9-14.	2.2	1,694