Stéphane A Laporte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697969/publications.pdf

Version: 2024-02-01

86 papers 9,193 citations

71102 41 h-index 84 g-index

92 all docs 92 docs citations

92 times ranked 6686 citing authors

#	Article	IF	CITATIONS
1	Standardized Cannabis Smoke Extract Induces Inflammation in Human Lung Fibroblasts. Frontiers in Pharmacology, 2022, 13, 852029.	3.5	3
2	Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nature Communications, 2021, 12, 4688.	12.8	7
3	Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D ₂ Dopamine Receptor. Molecular Pharmacology, 2021, 100, 372-387.	2.3	14
4	Intrinsic bias at non-canonical, \hat{l}^2 -arrestin-coupled seven transmembrane receptors. Molecular Cell, 2021, 81, 4605-4621.e11.	9.7	69
5	Signal profiling of the \hat{l}^21AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by \hat{l}^21AR and \hat{l}^22AR . Scientific Reports, 2020, 10, 8779.	3.3	26
6	Angiotensin II type 1 receptor variants alter endosomal receptor $\hat{\epsilon}^{\hat{i}^2}$ -arrestin complex stability and MAPK activation. Journal of Biological Chemistry, 2020, 295, 13169-13180.	3.4	11
7	Key phosphorylation sites in <scp>GPCR</scp> s orchestrate the contribution of βâ€Arrestin 1 in <scp>ERK</scp> 1/2 activation. EMBO Reports, 2020, 21, e49886.	4.5	48
8	Genetic code expansion and photocross-linking identify different \hat{l}^2 -arrestin binding modes to the angiotensin II type 1 receptor. Journal of Biological Chemistry, 2019, 294, 17409-17420.	3.4	21
9	\hat{l}^2 -Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods in Molecular Biology, 2019, 1957, 9-55.	0.9	29
10	Methods to Monitor the Trafficking of \hat{l}^2 -Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET. Methods in Molecular Biology, 2019, 1957, 59-68.	0.9	11
11	FZD $<$ sub $>$ 5 $<$ /sub $>$ is a GÎ \pm $<$ sub $>$ 9 $<$ /sub $>$ -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling, 2018, 11, .	3.6	46
12	Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Science Signaling, 2018, 11 , .	3.6	106
13	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3 . 6	169
14	Novel Pathogenesis of Hypertension and Diastolic Dysfunction Caused by M3R (Muscarinic) Tj ETQq0 0 0 rgBT /	Overlock 1	10 Тf 50 222 Т 20
15	Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D2 Dopamine Receptor. Frontiers in Synaptic Neuroscience, 2018, 10, 2.	2.5	14
16	A new inhibitor of the \hat{I}^2 -arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications, 2017, 8, 15054.	12.8	111
17	Monitoring G protein-coupled receptor and \hat{l}^2 -arrestin trafficking in live cells using enhanced by by by tander BRET. Nature Communications, 2016, 7, 12178.	12.8	219
18	Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4524-4529.	7.1	46

#	Article	IF	Citations
19	The conformational signature of \hat{l}^2 -arrestin2 predicts its trafficking and signalling functions. Nature, 2016, 531, 665-668.	27.8	191
20	Î ² -Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2016, 291, 3967-3981.	3.4	22
21	Quantifying biased signaling in GPCRs using BRET-based biosensors. Methods, 2016, 92, 5-10.	3.8	31
22	Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2. Oncotarget, 2016, 7, 61152-61165.	1.8	5
23	Angiotensin II Type I and Prostaglandin F2α Receptors Cooperatively Modulate Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2015, 290, 3137-3148.	3.4	48
24	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	12.8	282
25	Investigation of the active turn geometry for the labour delaying activity of indolizidinone and azapeptide modulators of the prostaglandin $F \cdot sub \cdot 2\hat{l} \pm \cdot /sub \cdot receptor$. Organic and Biomolecular Chemistry, 2015, 13, 7750-7761.	2.8	12
26	Synthesis of azabicycloalkanone amino acid and azapeptide mimics and their application as modulators of the prostaglandin F2α receptor for delaying preterm birth. Canadian Journal of Chemistry, 2014, 92, 1031-1040.	1.1	8
27	Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics. Frontiers in Endocrinology, 2014, 5, 68.	3.5	70
28	Differential Regulation of Endosomal GPCR/ \hat{l}^2 -Arrestin Complexes and Trafficking by MAPK. Journal of Biological Chemistry, 2014, 289, 23302-23317.	3.4	36
29	A Simple Method to Detect Allostery in GPCR Dimers. Methods in Cell Biology, 2013, 117, 165-179.	1.1	7
30	<scp>GPCR</scp> heterodimers: asymmetries in ligand binding and signalling output offer new targets for drug discovery. British Journal of Pharmacology, 2013, 168, 1101-1103.	5.4	12
31	T Cell–Induced Airway Smooth Muscle Cell Proliferation via the Epidermal Growth Factor Receptor. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 563-570.	2.9	20
32	Biasing the Prostaglandin F2 \hat{l} ± Receptor Responses toward EGFR-Dependent Transactivation of MAPK. Molecular Endocrinology, 2012, 26, 1189-1202.	3.7	19
33	Differential β-Arrestin–Dependent Conformational Signaling and Cellular Responses Revealed by Angiotensin Analogs. Science Signaling, 2012, 5, ra33.	3.6	140
34	Functional interactions between the oxytocin receptor and the \hat{I}^2 2-adrenergic receptor: Implications for ERK1/2 activation in human myometrial cells. Cellular Signalling, 2012, 24, 333-341.	3.6	32
35	Allosteric interactions between the oxytocin receptor and the \hat{I}^2 2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cellular Signalling, 2012, 24, 342-350.	3.6	34
36	Targeting the Prostaglandin F2 \hat{l} ± Receptor for Preventing Preterm Labor with Azapeptide Tocolytics. Journal of Medicinal Chemistry, 2011, 54, 6085-6097.	6.4	30

#	Article	IF	CITATIONS
37	Role of ßarrestins in bradykinin B2 receptor-mediated signalling. Cellular Signalling, 2011, 23, 648-659.	3.6	35
38	Essential Role of Endocytosis of the Type II Transmembrane Serine Protease TMPRSS6 in Regulating Its Functionality. Journal of Biological Chemistry, 2011, 286, 29035-29043.	3.4	22
39	An Interaction between L-prostaglandin D Synthase and Arrestin Increases PGD2 Production. Journal of Biological Chemistry, 2011, 286, 2696-2706.	3.4	11
40	Study of G Protein-Coupled Receptor/ \hat{l}^2 -arrestin Interactions Within Endosomes Using FRAP. Methods in Molecular Biology, 2011, 756, 371-380.	0.9	10
41	$G\hat{l}^2\hat{l}^3$ is a negative regulator of AP-1 mediated transcription. Cellular Signalling, 2010, 22, 1254-1266.	3.6	29
42	A Novel Biased Allosteric Compound Inhibitor of Parturition Selectively Impedes the Prostaglandin F2α-mediated Rho/ROCK Signaling Pathway. Journal of Biological Chemistry, 2010, 285, 25624-25636.	3.4	87
43	Cellular Signalling: Peptide Hormones and Growth Factors. Progress in Brain Research, 2010, 181, 1-16.	1.4	16
44	c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cellular Signalling, 2009, 21, 103-110.	3.6	53
45	TGFÎ ² -induced GRK2 expression attenuates Angll-regulated vascular smooth muscle cell proliferation and migration. Cellular Signalling, 2009, 21, 899-905.	3.6	27
46	C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Molecular Immunology, 2009, 46, 3086-3098.	2.2	39
47	Cross-Talk between Signaling Pathways Can Generate Robust Oscillations in Calcium and cAMP. PLoS ONE, 2009, 4, e7189.	2.5	35
48	Inferring the Lifetime of Endosomal Protein Complexes by Fluorescence Recovery after Photobleaching. Biophysical Journal, 2008, 94, 679-687.	0.5	8
49	Role of ßarrestin in the B2Râ€mediated ERK activation. FASEB Journal, 2008, 22, 314-314.	0.5	O
50	N-terminal Tyrosine Modulation of the Endocytic Adaptor Function of the \hat{I}^2 -Arrestins. Journal of Biological Chemistry, 2007, 282, 18937-18944.	3.4	14
51	Unraveling G Protein-coupled Receptor Endocytosis Pathways Using Real-time Monitoring of Agonist-promoted Interaction between Î ² -Arrestins and AP-2. Journal of Biological Chemistry, 2007, 282, 29089-29100.	3.4	67
52	Src-dependent phosphorylation of β2-adaptin dissociates the β-arrestin–AP-2 complex. Journal of Cell Science, 2007, 120, 1723-1732.	2.0	42
53	ARF6 regulates angiotensin II type 1 receptor endocytosis by controlling the recruitment of AP-2 and clathrin. Cellular Signalling, 2007, 19 , 2370 - 2378 .	3.6	34
54	Involvement of a cytoplasmic-tail serine cluster in urotensin II receptor internalization. Biochemical Journal, 2005, 385, 115-123.	3.7	17

#	Article	IF	CITATIONS
55	The G protein-coupled receptor kinase-2 is a $TGF\hat{l}^2$ -inducible antagonist of $TGF\hat{l}^2$ signal transduction. EMBO Journal, 2005, 24, 3247-3258.	7.8	86
56	Dissociation of \hat{l}^2 -arrestin from internalized bradykinin B2 receptor is necessary for receptor recycling and resensitization. Cellular Signalling, 2005, 17, 1074-1083.	3.6	50
57	c-Src Regulates Clathrin Adapter Protein 2 Interaction with \hat{l}^2 -Arrestin and the Angiotensin II Type 1 Receptor during Clathrin- Mediated Internalization. Molecular Endocrinology, 2005, 19, 491-503.	3.7	72
58	Involvement of Actin in Agonist-induced Endocytosis of the G Protein-coupled Receptor for Thromboxane A2. Journal of Biological Chemistry, 2005, 280, 23215-23224.	3.4	35
59	C5L2 Is a Functional Receptor for Acylation-stimulating Protein. Journal of Biological Chemistry, 2005, 280, 23936-23944.	3.4	158
60	G Protein-coupled Receptor Kinase Regulates Dopamine D3 Receptor Signaling by Modulating the Stability of a Receptor-Filamin-Î ² -Arrestin Complex. Journal of Biological Chemistry, 2005, 280, 12774-12780.	3.4	80
61	Novel roles for arrestins in G protein-coupled receptor biology and drug discovery. Current Opinion in Drug Discovery & Development, 2005, 8, 585-9.	1.9	4
62	Real-Time Detection of Interactions between the Human Oxytocin Receptor and G Protein-Coupled Receptor Kinase-2. Molecular Endocrinology, 2004, 18, 1277-1286.	3.7	72
63	The oxytocin receptor. Trends in Endocrinology and Metabolism, 2003, 14, 222-227.	7.1	265
64	The Stability of the G Protein-coupled Receptor-Î ² -Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation. Journal of Biological Chemistry, 2003, 278, 6258-6267.	3.4	316
65	\hat{l}^2 -Arrestin/AP-2 Interaction in G Protein-coupled Receptor Internalization. Journal of Biological Chemistry, 2002, 277, 9247-9254.	3.4	126
66	Rab5 Association with the Angiotensin II Type 1A Receptor Promotes Rab5 GTP Binding and Vesicular Fusion. Journal of Biological Chemistry, 2002, 277, 679-685.	3.4	117
67	Phosphoinositide 3-kinase regulates $\hat{1}^2$ 2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor $\hat{1}^2$ -arrestin complex. Journal of Cell Biology, 2002, 158, 563-575.	5. 2	178
68	Apparent Loss-of-Function Mutant GPCRs Revealed as Constitutively Desensitized Receptors. Biochemistry, 2002, 41, 11981-11989.	2.5	77
69	Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and ÄŸ-arrestin proteins. Progress in Neurobiology, 2002, 66, 61-79.	5.7	493
70	Molecular Determinants Underlying the Formation of Stable Intracellular G Protein-coupled Receptor-Î ² -Arrestin Complexes after Receptor Endocytosis*. Journal of Biological Chemistry, 2001, 276, 19452-19460.	3.4	389
71	Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 93-98.	7.1	114
72	SIGNAL TRANSDUCTION: Bringing Channels Closer to the Action!. Science, 2001, 293, 62-63.	12.6	11

#	Article	IF	Citations
73	The Interaction of \hat{l}^2 -Arrestin with the AP-2 Adaptor Is Required for the Clustering of \hat{l}^2 2-Adrenergic Receptor into Clathrin-coated Pits. Journal of Biological Chemistry, 2000, 275, 23120-23126.	3.4	331
74	Differential Affinities of Visual Arrestin, \hat{l}^2 Arrestin1, and \hat{l}^2 Arrestin2 for G Protein-coupled Receptors Delineate Two Major Classes of Receptors. Journal of Biological Chemistry, 2000, 275, 17201-17210.	3.4	768
75	beta -Arrestin 2: A Receptor-Regulated MAPK Scaffold for the Activation of JNK3. , 2000, 290, 1574-1577.		752
76	Photolabeling Identifies Position 172 of the Human AT1 Receptor as a Ligand Contact Point: Receptor-Bound Angiotensin II Adopts an Extended Structure. Biochemistry, 2000, 39, 9662-9670.	2.5	65
77	Association of \hat{I}^2 -Arrestin with G Protein-coupled Receptors during Clathrin-mediated Endocytosis Dictates the Profile of Receptor Resensitization. Journal of Biological Chemistry, 1999, 274, 32248-32257.	3.4	501
78	Cellular Trafficking of G Protein-coupled Receptor $\hat{\mathbb{I}}^2$ -Arrestin Endocytic Complexes. Journal of Biological Chemistry, 1999, 274, 10999-11006.	3.4	199
79	The \hat{l}^2 ₂ -adrenergic receptor/ \hat{l}^2 arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3712-3717.	7.1	588
80	Muscarinic Supersensitivity and Impaired Receptor Desensitization in G Protein–Coupled Receptor Kinase 5–Deficient Mice. Neuron, 1999, 24, 1029-1036.	8.1	180
81	[14] Signaling, desensitization, and trafficking of G protein-coupled receptors revealed by green fluorescent protein conjugates. Methods in Enzymology, 1999, 302, 153-171.	1.0	15
82	Role for G protein-coupled receptor kinase in agonist-specific regulation of $\hat{1}\frac{1}{4}$ -opioid receptor responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7157-7162.	7.1	488
83	Identification of Angiotensin II-binding Domains in the Rat AT2 Receptor with Photolabile Angiotensin Analogs. Journal of Biological Chemistry, 1997, 272, 8653-8659.	3.4	44
84	Use of LiCl in Phospholipase C Assays Masks the Impaired Functionality of a Mutant Angiotensin II Receptor. Cellular Signalling, 1997, 9, 379-382.	3.6	5
85	Expression of Prostaglandin-Endoperoxide Synthase 1 and Prostaglandin-Endoperoxide Synthase 2 in Human Osteoblasts. Biochemical and Biophysical Research Communications, 1994, 198, 955-960.	2.1	45
86	Neointima formation after vascular injury is angiotensin II mediated. Biochemical and Biophysical Research Communications, 1992, 187, 1510-1516.	2.1	48