Stéphane A Laporte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2697969/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Differential Affinities of Visual Arrestin, βArrestin1, and βArrestin2 for G Protein-coupled Receptors Delineate Two Major Classes of Receptors. Journal of Biological Chemistry, 2000, 275, 17201-17210.	3.4	768
2	beta -Arrestin 2: A Receptor-Regulated MAPK Scaffold for the Activation of JNK3. , 2000, 290, 1574-1577.		752
3	The β ₂ -adrenergic receptor/βarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3712-3717.	7.1	588
4	Association of β-Arrestin with G Protein-coupled Receptors during Clathrin-mediated Endocytosis Dictates the Profile of Receptor Resensitization. Journal of Biological Chemistry, 1999, 274, 32248-32257.	3.4	501
5	Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and ß-arrestin proteins. Progress in Neurobiology, 2002, 66, 61-79.	5.7	493
6	Role for G protein-coupled receptor kinase in agonist-specific regulation of μ-opioid receptor responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7157-7162.	7.1	488
7	Molecular Determinants Underlying the Formation of Stable Intracellular G Protein-coupled Receptor-β-Arrestin Complexes after Receptor Endocytosis*. Journal of Biological Chemistry, 2001, 276, 19452-19460.	3.4	389
8	The Interaction of β-Arrestin with the AP-2 Adaptor Is Required for the Clustering of β2-Adrenergic Receptor into Clathrin-coated Pits. Journal of Biological Chemistry, 2000, 275, 23120-23126.	3.4	331
9	The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation. Journal of Biological Chemistry, 2003, 278, 6258-6267.	3.4	316
10	The experimental power of FR900359 to study Gq-regulated biological processes. Nature Communications, 2015, 6, 10156.	12.8	282
11	The oxytocin receptor. Trends in Endocrinology and Metabolism, 2003, 14, 222-227.	7.1	265
12	Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET. Nature Communications, 2016, 7, 12178.	12.8	219
13	Cellular Trafficking of G Protein-coupled Receptor/β-Arrestin Endocytic Complexes. Journal of Biological Chemistry, 1999, 274, 10999-11006.	3.4	199
14	The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature, 2016, 531, 665-668.	27.8	191
15	Muscarinic Supersensitivity and Impaired Receptor Desensitization in G Protein–Coupled Receptor Kinase 5–Deficient Mice. Neuron, 1999, 24, 1029-1036.	8.1	180
16	Phosphoinositide 3-kinase regulates β2-adrenergic receptor endocytosis by AP-2 recruitment to the receptor/β-arrestin complex. Journal of Cell Biology, 2002, 158, 563-575.	5.2	178
17	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3.6	169
18	C5L2 Is a Functional Receptor for Acylation-stimulating Protein. Journal of Biological Chemistry, 2005, 280, 23936-23944	3.4	158

#	Article	IF	CITATIONS
19	Differential β-Arrestin–Dependent Conformational Signaling and Cellular Responses Revealed by Angiotensin Analogs. Science Signaling, 2012, 5, ra33.	3.6	140
20	β-Arrestin/AP-2 Interaction in G Protein-coupled Receptor Internalization. Journal of Biological Chemistry, 2002, 277, 9247-9254.	3.4	126
21	Rab5 Association with the Angiotensin II Type 1A Receptor Promotes Rab5 GTP Binding and Vesicular Fusion. Journal of Biological Chemistry, 2002, 277, 679-685.	3.4	117
22	Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 93-98.	7.1	114
23	A new inhibitor of the β-arrestin/AP2 endocytic complex reveals interplay between GPCR internalization and signalling. Nature Communications, 2017, 8, 15054.	12.8	111
24	Functional selectivity profiling of the angiotensin II type 1 receptor using pathway-wide BRET signaling sensors. Science Signaling, 2018, 11, .	3.6	106
25	A Novel Biased Allosteric Compound Inhibitor of Parturition Selectively Impedes the Prostaglandin F2α-mediated Rho/ROCK Signaling Pathway. Journal of Biological Chemistry, 2010, 285, 25624-25636.	3.4	87
26	The G protein-coupled receptor kinase-2 is a TGFβ-inducible antagonist of TGFβ signal transduction. EMBO Journal, 2005, 24, 3247-3258.	7.8	86
27	G Protein-coupled Receptor Kinase Regulates Dopamine D3 Receptor Signaling by Modulating the Stability of a Receptor-Filamin-β-Arrestin Complex. Journal of Biological Chemistry, 2005, 280, 12774-12780.	3.4	80
28	Apparent Loss-of-Function Mutant GPCRs Revealed as Constitutively Desensitized Receptors. Biochemistry, 2002, 41, 11981-11989.	2.5	77
29	Real-Time Detection of Interactions between the Human Oxytocin Receptor and G Protein-Coupled Receptor Kinase-2. Molecular Endocrinology, 2004, 18, 1277-1286.	3.7	72
30	c-Src Regulates Clathrin Adapter Protein 2 Interaction with β-Arrestin and the Angiotensin II Type 1 Receptor during Clathrin- Mediated Internalization. Molecular Endocrinology, 2005, 19, 491-503.	3.7	72
31	Allosteric and Biased G Protein-Coupled Receptor Signaling Regulation: Potentials for New Therapeutics. Frontiers in Endocrinology, 2014, 5, 68.	3.5	70
32	Intrinsic bias at non-canonical, Î ² -arrestin-coupled seven transmembrane receptors. Molecular Cell, 2021, 81, 4605-4621.e11.	9.7	69
33	Unraveling G Protein-coupled Receptor Endocytosis Pathways Using Real-time Monitoring of Agonist-promoted Interaction between β-Arrestins and AP-2. Journal of Biological Chemistry, 2007, 282, 29089-29100.	3.4	67
34	Photolabeling Identifies Position 172 of the Human AT1 Receptor as a Ligand Contact Point: Receptor-Bound Angiotensin II Adopts an Extended Structure. Biochemistry, 2000, 39, 9662-9670.	2.5	65
35	c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cellular Signalling, 2009, 21, 103-110.	3.6	53
36	Dissociation of Î ² -arrestin from internalized bradykinin B2 receptor is necessary for receptor recycling and resensitization. Cellular Signalling, 2005, 17, 1074-1083.	3.6	50

#	Article	IF	CITATIONS
37	Neointima formation after vascular injury is angiotensin II mediated. Biochemical and Biophysical Research Communications, 1992, 187, 1510-1516.	2.1	48
38	Angiotensin II Type I and Prostaglandin F2α Receptors Cooperatively Modulate Signaling in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2015, 290, 3137-3148.	3.4	48
39	Key phosphorylation sites in <scp>GPCR</scp> s orchestrate the contribution of βâ€Arrestin 1 in <scp>ERK</scp> 1/2 activation. EMBO Reports, 2020, 21, e49886.	4.5	48
40	Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4524-4529.	7.1	46
41	FZD ₅ is a Gα _q -coupled receptor that exhibits the functional hallmarks of prototypical GPCRs. Science Signaling, 2018, 11, .	3.6	46
42	Expression of Prostaglandin-Endoperoxide Synthase 1 and Prostaglandin-Endoperoxide Synthase 2 in Human Osteoblasts. Biochemical and Biophysical Research Communications, 1994, 198, 955-960.	2.1	45
43	Identification of Angiotensin II-binding Domains in the Rat AT2 Receptor with Photolabile Angiotensin Analogs. Journal of Biological Chemistry, 1997, 272, 8653-8659.	3.4	44
44	Src-dependent phosphorylation of β2-adaptin dissociates the β-arrestin–AP-2 complex. Journal of Cell Science, 2007, 120, 1723-1732.	2.0	42
45	C5a- and ASP-mediated C5L2 activation, endocytosis and recycling are lost in S323I-C5L2 mutation. Molecular Immunology, 2009, 46, 3086-3098.	2.2	39
46	Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK. Journal of Biological Chemistry, 2014, 289, 23302-23317.	3.4	36
47	Involvement of Actin in Agonist-induced Endocytosis of the G Protein-coupled Receptor for Thromboxane A2. Journal of Biological Chemistry, 2005, 280, 23215-23224.	3.4	35
48	Role of ÄŸarrestins in bradykinin B2 receptor-mediated signalling. Cellular Signalling, 2011, 23, 648-659.	3.6	35
49	Cross-Talk between Signaling Pathways Can Generate Robust Oscillations in Calcium and cAMP. PLoS ONE, 2009, 4, e7189.	2.5	35
50	ARF6 regulates angiotensin II type 1 receptor endocytosis by controlling the recruitment of AP-2 and clathrin. Cellular Signalling, 2007, 19, 2370-2378.	3.6	34
51	Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cellular Signalling, 2012, 24, 342-350.	3.6	34
52	Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: Implications for ERK1/2 activation in human myometrial cells. Cellular Signalling, 2012, 24, 333-341.	3.6	32
53	Quantifying biased signaling in GPCRs using BRET-based biosensors. Methods, 2016, 92, 5-10.	3.8	31
54	Targeting the Prostaglandin F2α Receptor for Preventing Preterm Labor with Azapeptide Tocolytics. Journal of Medicinal Chemistry, 2011, 54, 6085-6097.	6.4	30

#	Article	IF	CITATIONS
55	Gβγ is a negative regulator of AP-1 mediated transcription. Cellular Signalling, 2010, 22, 1254-1266.	3.6	29
56	β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods in Molecular Biology, 2019, 1957, 9-55.	0.9	29
57	TGFÎ ² -induced GRK2 expression attenuates AngII-regulated vascular smooth muscle cell proliferation and migration. Cellular Signalling, 2009, 21, 899-905.	3.6	27
58	Signal profiling of the β1AR reveals coupling to novel signalling pathways and distinct phenotypic responses mediated by β1AR and β2AR. Scientific Reports, 2020, 10, 8779.	3.3	26
59	Essential Role of Endocytosis of the Type II Transmembrane Serine Protease TMPRSS6 in Regulating Its Functionality. Journal of Biological Chemistry, 2011, 286, 29035-29043.	3.4	22
60	β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2016, 291, 3967-3981.	3.4	22
61	Genetic code expansion and photocross-linking identify different β-arrestin binding modes to the angiotensin II type 1 receptor. Journal of Biological Chemistry, 2019, 294, 17409-17420.	3.4	21
62	T Cell–Induced Airway Smooth Muscle Cell Proliferation via the Epidermal Growth Factor Receptor. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 563-570.	2.9	20
63	Novel Pathogenesis of Hypertension and Diastolic Dysfunction Caused by M3R (Muscarinic) Tj ETQq1 1 0.784314	rgBT ∕Ov 2.7	erlock 10 Tf
64	Biasing the Prostaglandin F2α Receptor Responses toward EGFR-Dependent Transactivation of MAPK. Molecular Endocrinology, 2012, 26, 1189-1202.	3.7	19
65	Involvement of a cytoplasmic-tail serine cluster in urotensin II receptor internalization. Biochemical Journal, 2005, 385, 115-123.	3.7	17
66	Cellular Signalling: Peptide Hormones and Growth Factors. Progress in Brain Research, 2010, 181, 1-16.	1.4	16
67	[14] Signaling, desensitization, and trafficking of G protein-coupled receptors revealed by green fluorescent protein conjugates. Methods in Enzymology, 1999, 302, 153-171.	1.0	15
68	N-terminal Tyrosine Modulation of the Endocytic Adaptor Function of the Î ² -Arrestins. Journal of Biological Chemistry, 2007, 282, 18937-18944.	3.4	14
69	Structure-Activity Investigation of a G Protein-Biased Agonist Reveals Molecular Determinants for Biased Signaling of the D2 Dopamine Receptor. Frontiers in Synaptic Neuroscience, 2018, 10, 2.	2.5	14
70	Pharmacological Characterization of the Imipridone Anticancer Drug ONC201 Reveals a Negative Allosteric Mechanism of Action at the D ₂ Dopamine Receptor. Molecular Pharmacology, 2021, 100, 372-387.	2.3	14
71	<scp>GPCR</scp> heterodimers: asymmetries in ligand binding and signalling output offer new targets for drug discovery. British Journal of Pharmacology, 2013, 168, 1101-1103.	5.4	12
72	Investigation of the active turn geometry for the labour delaying activity of indolizidinone and azapeptide modulators of the prostaglandin F _{2î±} receptor. Organic and Biomolecular Chemistry, 2015, 13, 7750-7761.	2.8	12

#	Article	IF	CITATIONS
73	An Interaction between L-prostaglandin D Synthase and Arrestin Increases PGD2 Production. Journal of Biological Chemistry, 2011, 286, 2696-2706.	3.4	11
74	Methods to Monitor the Trafficking of β-Arrestin/G Protein-Coupled Receptor Complexes Using Enhanced Bystander BRET. Methods in Molecular Biology, 2019, 1957, 59-68.	0.9	11
75	Angiotensin II type 1 receptor variants alter endosomal receptor–β-arrestin complex stability and MAPK activation. Journal of Biological Chemistry, 2020, 295, 13169-13180.	3.4	11
76	SIGNAL TRANSDUCTION: Bringing Channels Closer to the Action!. Science, 2001, 293, 62-63.	12.6	11
77	Study of G Protein-Coupled Receptor/β-arrestin Interactions Within Endosomes Using FRAP. Methods in Molecular Biology, 2011, 756, 371-380.	0.9	10
78	Inferring the Lifetime of Endosomal Protein Complexes by Fluorescence Recovery after Photobleaching. Biophysical Journal, 2008, 94, 679-687.	0.5	8
79	Synthesis of azabicycloalkanone amino acid and azapeptide mimics and their application as modulators of the prostaglandin F2α receptor for delaying preterm birth. Canadian Journal of Chemistry, 2014, 92, 1031-1040.	1.1	8
80	A Simple Method to Detect Allostery in GPCR Dimers. Methods in Cell Biology, 2013, 117, 165-179.	1.1	7
81	Discovery of a dual Ras and ARF6 inhibitor from a GPCR endocytosis screen. Nature Communications, 2021, 12, 4688.	12.8	7
82	Use of LiCl in Phospholipase C Assays Masks the Impaired Functionality of a Mutant Angiotensin II Receptor. Cellular Signalling, 1997, 9, 379-382.	3.6	5
83	Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2. Oncotarget, 2016, 7, 61152-61165.	1.8	5
84	Novel roles for arrestins in G protein-coupled receptor biology and drug discovery. Current Opinion in Drug Discovery & Development, 2005, 8, 585-9.	1.9	4
85	Standardized Cannabis Smoke Extract Induces Inflammation in Human Lung Fibroblasts. Frontiers in Pharmacology, 2022, 13, 852029.	3.5	3
86	Role of ßarrestin in the B2Râ€mediated ERK activation. FASEB Journal, 2008, 22, 314-314.	0.5	0